精英家教网 > 高中数学 > 题目详情

【题目】如果二面角α﹣L﹣β的大小是60°,线段AB在α内,AB与L所成的角为60°,则AB与平面β所成角的正切值是

【答案】
【解析】解:过点A作平面β的垂线,垂足为C,在β内过C作l的垂线,垂足为D. 连结AD,根据三垂线定理可得AD⊥L,

因此,∠ADC为二面角α﹣L﹣β的平面角,∠ADC=60°
又∵AB与L所成角为60°,
∴∠ABD=60°,
连结BC,可得BC为AB在平面β内的射影,
∴∠ABC为AB与平面β所成的角.
设AD=2x,则Rt△ACD中,AC=ADsin60°= x,
Rt△ABD中,AB= = x
∴Rt△ABC中,sin∠ABC= =34,
∴tan∠ABC=
所以答案是:
【考点精析】掌握空间角的异面直线所成的角是解答本题的根本,需要知道已知为两异面直线,A,C与B,D分别是上的任意两点,所成的角为,则

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知圆经过变换后得曲线.

(1)求的方程;

(2)若为曲线上两点, 为坐标原点,直线的斜率分别为,求直线被圆截得弦长的最大值及此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知a∈R,方程a2x2+(a+2)y2+4x+8y+5a=0表示圆,则圆心坐标是 , 半径是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,g(x)=ax﹣3.
(1)当a=l时,确定函数h(x)=f(x)﹣g(x)在(0,+∞)上的单调性;
(2)若对任意x∈[0,4],总存在x0∈[﹣2,2],使得g(x0)=f(x)成立,求 实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在长方体ABCD﹣A1B1C1D1中,AB=2 ,AD=2 ,AA1=2,BC和A1C1所成的角=度 AA1和BC1所成的角=度.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 ),曲线处的切线方程为.

(Ⅰ)求 的值;

(Ⅱ)证明:

(Ⅲ)已知满足的常数为.令函数(其中是自然对数的底数, ),若的极值点,且恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (a>0).
(1)证明函数f(x)在(0,2]上是减函数,(2,+∞)上是增函数;
(2)若方程f(x)=0有且只有一个实数根,判断函数g(x)=f(x)﹣4的奇偶性;
(3)在(2)的条件下探求方程f(x)=m(m≥8)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,已知四棱锥P﹣ABCD,底面四边形ABCD为菱形,AB=2,BD=2 ,M,N分别是线段PA,PC的中点. (Ⅰ)求证:MN∥平面ABCD;
(Ⅱ)求异面直线MN与BC所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 是奇函数.
(1)求实数a的值;
(2)用定义证明函数f(x)在R上的单调性;
(3)若对任意的x∈R,不等式f(x2﹣x)+f(2x2﹣k)>0恒成立,求实数k的取值范围.

查看答案和解析>>

同步练习册答案