精英家教网 > 高中数学 > 题目详情
已知抛物线C:y2=4x焦点为F,过F的直线交抛物线C于A,B两点,l1、l2分别过点A、B且与抛物线C相切,P为l1、l2的交点.
(1)求证:动点P在一条定直线上,并求此直线方程;
(2)设C、D为直线l1、l2与直线x=4的交点,△PCD面积为S1,△PAB面积为S2,求
S1
S2
的取值范围.
考点:直线与圆锥曲线的综合问题
专题:综合题,圆锥曲线中的最值与范围问题
分析:(1)设A(
y12
4
,y1),B(
y22
4
y2
)(y1>0>y2),设l1方程为y-y1=k1(x-
y12
4
)
,由其余抛物线相切可得k1=
2
y1
,l1方程为y=
2
y1
x+
1
2
y1
,同理l2方程为y=
2
y2
x+
1
2
y2
,联立l1、l2方程可得点P坐标为P(
y1y2
4
y1+y2
2
),设直线AB的方程为x=ty+1,与抛物线方程联立及韦达定理可求得xP=-1,于是得到结论;
(2)由(1)知,C、D的坐标分别为C(4 , 
8
y1
+
1
2
y1)
D(4 , 
8
y2
+
1
2
y2)
.由三角形面积公式分别表示出S1,S2,根据
S1
S2
的形式可求其范围;
解答: 解:(1)设A(
y12
4
,y1),B(
y22
4
y2
)(y1>0>y2),
易知l1斜率存在,设为k1,则l1方程为y-y1=k1(x-
y12
4
)

y-y1=k1(x-
y12
4
)
y2=4x
,得k1y2-4y+4y1-k1y12=0,
由直线l1与抛物线C相切,知△=16-4k1(4y1-k1y12)=0,
于是,k1=
2
y1
,l1方程为y=
2
y1
x+
1
2
y1

同理l2方程为y=
2
y2
x+
1
2
y2

联立l1、l2方程可得点P坐标为P(
y1y2
4
y1+y2
2
),
设直线AB的方程为x=ty+1,与抛物线方程联立得y2-4ty-4=0.
y1+y2=4t,y1y2=-4,则xP=
y1y2
4
=-1,
∴点P定在直线x=-1上.
(2)由(1)知,C、D的坐标分别为C(4 , 
8
y1
+
1
2
y1)
D(4 , 
8
y2
+
1
2
y2)

| CD |=|  (
8
y1
+
1
2
y1)-(
8
y2
+
1
2
y2) |=| 
(y1y2-16)(y1-y2)
2y1y2
 |

∴S1=S△PCD=
1
2
| 4-
y1y2
4
 |•| 
(y1y2-16)(y1-y2)
2y1y2
 |
=
25
4
|y1-y2|

S2=S△PAB=
1
2
|-2-2t2|
1+t2
1+t2
|y1-y2|

S1
S2
=
25
4(1+t2)
∈(0,
25
4
]
点评:该题考查抛物线的方程性质、直线与抛物线的位置关系、切线等知识,考查学生的运算求解及推理论证能力,综合性较强,难度较大.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

阅读如图的程序框图,运行相应的程序,若输出S=
2013
2014
,则判断框内应填入(  )
A、i≥2014
B、i≥2015
C、i>2014
D、i>2015

查看答案和解析>>

科目:高中数学 来源: 题型:

执行如图所示的程序框图,输出的结果是15,则a的初始值m(m>0)有多少种可能(  )
A、1B、2C、3D、4

查看答案和解析>>

科目:高中数学 来源: 题型:

某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测试了每件产品的质量指标值,得到下面试验结果:
A配方的频率分布表
指标值分组 〔90,94) 〔94,98) 〔98,102) 〔102,106) 〔106,110〕
频数 8 20 42 22 8
B配方的频率分布表
指标值分组 〔90,94) 〔94,98) 〔98,102) 〔102,106) 〔106,110〕
频数 4 12 42 32 10
(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;
(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为yy=
-2, t<94
2 ,94≤t<102
4,t≥102

从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以实验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)

查看答案和解析>>

科目:高中数学 来源: 题型:

(Ⅰ)一个骰子投掷2次,得到的点数分别为a,b,求直线y=a-b与函数y=sinx图象所有交点中相邻两个交点的距离都相等的概率.
(Ⅱ)若a是从区间[0,6]上任取一个数,b是从区间[0,6]上任取一个数,求直线y=a-b在函数y=sinx图象上方的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和为sn,a1=1,当n∈N+有an+1=
Sn
n
+n+1.
(1)求{an}的通项公式
(2)记bn=
1
an
,求证:b1+b2+…+bn
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2
3
sinxcosx+2cos2x+m在区间[0,
π
3
]上的最大值为2.
(1)求常数m的值;
(2)在△ABC中,角A,B,C所对的边长分别为a,b,c,若f(A)=1,sinB=3sinC,△ABC面积为
9
3
4
,求边长a.

查看答案和解析>>

科目:高中数学 来源: 题型:

在研究PM2.5(霾的主要成分)形成原因时,某研究人员研究了PM2.5与燃烧排放的CO2,NO2,CO,O3等物质的相关关系,如图是PM2.5与CO,O3相关性的散点图,
(Ⅰ)根据三点图,请你就CO,O3对PM2.5的影响关系作出初步评价;
(Ⅱ)以100μg/m3为单位,在上述左图中取三个点,如下表所示,
PM2.5(x) 1 2 4
CO(y) 0.5 1 1.5
y
关于
x
的回归方程,并估计当CO的排放量为200μg/m3时,PM2.5的值(用最小二乘法求回归方程的系数是(b=
n
i-1
xiyi-n
.
x
.
y
n
i-1
xi2-n
.
x
2
,a=
.
y
-b
.
x

(Ⅲ)雾霾对交通影响较大,某市交通部门发现,在一个月内,当CO排放量(单位:μg/m3)分别是60,120,180时,某路口的交通流量(单位:万辆)依次是800,600,200,在一个月内,CO排放量是60,120,180的概率依次是p,q,r,且ρ≤
1
3
,3ρ≤4r,求该路口一个月的交通流量期望值的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

二项式(1+sinx)n的展开式中,末尾两项的系数之和为7,且系数最大的一项的值为
5
2
,则x在[0,2π]内的值为
 

查看答案和解析>>

同步练习册答案