精英家教网 > 高中数学 > 题目详情
4.已知正数x,y满足2x+y=1,则4x2+y2+$\frac{1}{xy}$的最小值为$\frac{17}{2}$.

分析 由基本不等式可得0<xy≤$\frac{1}{8}$,令t=xy,0<t≤$\frac{1}{8}$,由4t-$\frac{1}{t}$在0<t≤$\frac{1}{8}$递增,可得最小值.

解答 解:正数x,y满足2x+y=1,
可得2x+y≥2$\sqrt{2xy}$,
即有0<xy≤$\frac{1}{8}$,
则4x2+y2+$\frac{1}{xy}$=(2x+y)2-4xy+$\frac{1}{xy}$
=1-(4xy-$\frac{1}{xy}$),
令t=xy,0<t≤$\frac{1}{8}$,
由4t-$\frac{1}{t}$在0<t≤$\frac{1}{8}$递增,
可得t=$\frac{1}{8}$时,4t-$\frac{1}{t}$取得最大值,且为-$\frac{15}{2}$,
则4x2+y2+$\frac{1}{xy}$在xy=$\frac{1}{8}$时,取得最小值,且为1+$\frac{15}{2}$=$\frac{17}{2}$.
故答案为:$\frac{17}{2}$.

点评 本题考查基本不等式的运用:求最值,同时考查配方法和函数的单调性的运用,考查运算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

14.已知${2^x}>{(\frac{1}{2})^{x-1}}$,则x的取值范围是(  )
A.RB.$x<\frac{1}{2}$C.$x>\frac{1}{2}$D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.某校现有高一学生210人,高二学生270人,高三学生240人,用分层抽样的方法从这三个年级的学生中随机抽取n名学生进行问卷调查,如果已知从高一学生中抽取的人数为7,那么从高三学生中抽取的人数应为(  )
A.7B.8C.9D.10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设函数f(x)=log2(x-a)(a∈R).
(1)当a=2时,解方程f(x)-f(x+1)=-1;
(2)如图所示的平面直角坐标系中,每一个小方格的边长均为1,当a=1时,试在该坐标系中作出函数y=|f(x)|的简图,并写出(不需要证明)它的定义域、值域、奇偶性、单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,角A,B,C所对的边分别为a,b,c,若a=$\sqrt{3}$,且a2=b2+c2-bc,则△ABC的面积S的最大值为(  )
A.$\frac{\sqrt{3}}{4}$B.$\frac{\sqrt{3}}{2}$C.$\frac{3\sqrt{3}}{4}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在四棱锥P-ABCD中,平面PAD⊥平面ABCD,AB∥CD,∠ABC=90°,AB=2,AD=$\sqrt{2}$,PA=PD=CD=CB=1,E总是线段PB上的动点.
(Ⅰ)当E点在什么位置时,CE∥平面PAD?证明你的结论.
(Ⅱ)对于(Ⅰ)中的点E,求AE与底面ABCD所成角的正弦值;
(Ⅲ)求二面角A-PD-C的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.函数f(x)=sin(x+$\frac{π}{4}$)图象的一条对称轴方程为(  )
A.x=-$\frac{π}{4}$B.x=$\frac{π}{4}$C.x=$\frac{π}{2}$D.x=π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.某变速运动的物体,路程s(米)随时间t(秒)变化的函数关系式是s=t2-2t+5,则此物体在t=1秒时的瞬时速度为(  )
A.2m/sB.0m/sC.4m/sD.-4m/s

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数f(x)=$\frac{1}{x^2}$+1的图象关于(  )
A.y轴对称B.直线y=-x对称C.坐标原点对称D.直线y=x对称

查看答案和解析>>

同步练习册答案