精英家教网 > 高中数学 > 题目详情
精英家教网函数f(x)=Asin(wx+θ),(A>0,w>0,|θ|<
π
2
)
的图象如图,
(1)求它的解析式.
(2)若对任意实数x∈[0,
π
2
]
,则有|f(x)-m|<2,求实数m的取值范围.
分析:(1)由y=Asin(ωx+φ)的部分图象可知A=
2
3
4
T=
4
,从而可求w,又函数y=f(x)过(
π
12
2
),依题意可求θ,从而可确定其解析式;
(2)x∈[0,
π
2
]⇒2x+
π
3
∈[
π
3
3
],利用正弦函数的单调性与最值可求得f(x)的值域,解不等式|f(x)-m|<2,即可求得实数m的取值范围.
解答:解:(1)由图知,A=
2
3
4
T=
6
-
π
12
=
4

∴T=π,w=2,
又2×
π
12
+θ=2kπ+
π
2
(k∈Z),
∴θ=2kπ+
π
3
(k∈Z),|θ|<
π
2

∴θ=
π
3

∴f(x)=
2
sin(2x+
π
3
).
(2)∵x∈[0,
π
2
],
∴2x+
π
3
∈[
π
3
3
],
∴sin(2x+
π
3
)∈[-
3
2
,1],
∴f(x)∈[-
6
2
2
];①
又|f(x)-m|<2,
∴m-2<f(x)<m+2,
m<f(x)min+2
m>f(x)max-2

解得:
2
-2<m<2-
6
2

∴实数m的取值范围为(
2
-2,2-
6
2
).
点评:本题考查由y=Asin(ωx+φ)的部分图象确定解析式,着重考查正弦函数的单调性与最值,考查恒成立问题与解不等式组的能力,属于难题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π2
)
的部分图象如图所示.
(1)求函数f(x)的解析式;
(2)若图象g(x)与函数f(x)的图象关于点P(4,0)对称,求函数g(x)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•大连一模)已知函数f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)
的图象(部分)如图所示,则ω,φ分别为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

x∈[-
π
6
3
]
时,函数f(x)=Asin(ωx+θ) (A>0,ω>0,|θ|<
π
2
)
的图象如图所示.
(1)求函数f(x)在[-
π
6
3
]
上的表达式;
(2)求方程f(x)=
2
2
[-
π
6
3
]
的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网函数f(x)=Asin(ωx+φ),x∈R(A>0,ω>0,|φ|<
π
2
)
的一段图象如图5所示:将y=f(x)的图象向右平移m(m>0)个单位,可得到函数y=g(x)的图象,且图象关于原点对称,g(
π
2013
)>0

(1)求A、ω、φ的值;
(2)求m的最小值,并写出g(x)的表达式;
(3)若关于x的函数y=g(
tx
2
)
在区间[-
π
3
π
4
]
上最小值为-2,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,x∈R,|φ|<
π
2
)
的图象(部分)如图所示,则f(x)的解析式是(  )
A、f(x)=5sin(
π
3
x+
π
6
)
B、f(x)=5sin(
π
6
x-
π
6
)
C、f(x)=5sin(
π
6
x+
π
6
)
D、f(x)=5sin(
π
3
x-
π
6
)

查看答案和解析>>

同步练习册答案