精英家教网 > 高中数学 > 题目详情
(本小题满分14分)

如图,在三棱柱中,底面,E、F分别是棱的中点.
(1)求证:AB⊥平面AA1 C1C;
(2)若线段上的点满足平面//平面,试确定点的位置,并说明理由;
(3)证明:⊥A1C.
(1)详见解析;(2)是线段的中点;(3)详见解析.

试题分析:(1)求证:AB⊥平面AA1 C1C,证明线面垂直,只需证明线线垂直,即在平面找两条直线与垂直,由已知平面,故,且,故可证得结论;(2)线段上的点满足平面平面,且面,面,由面面平行的性质可以得到,在中,已知的中点,由中位线定理,即可确定点的位置;(3)证明:⊥A1C,证明线线垂直,只需证明一条直线垂直于另一条直线所在的平面,注意到四边形是一个正方形,则,易证,可得平面,由(2)知平面平面,从而得平面,即可证得结论.
(1)底面,                          2分
.                  4分
(2)//面,面,面
//,                                     7分
是棱的中点,
是线段的中点.                                             8分
(3)三棱柱
侧面是菱形,,                            9分
由(1)可得,                              11分
.                                  12分
分别为棱的中点,//,                            13分
.                                          14分
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥的底面是平行四边形,,分别是棱的中点.
(1)证明平面
(2)若二面角P-AD-B为
①证明:平面PBC⊥平面ABCD
②求直线EF与平面PBC所成角的正弦值.
 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在四棱锥P-ABCD中,平面ABCD,AD//BC,AC,,点M在线段PD上.

(1)求证:平面PAC;
(2)若二面角M-AC-D的大小为,试确定点M的位置.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,已知四棱锥P—ABCD的底面为等腰梯形,AB∥CD,AC⊥BD,垂足为H,PH是四棱锥的高,E为AD的中点.

(1)证明:PE⊥BC;
(2)若∠APB=∠ADB=60°,求直线PA与平面PEH所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱柱ABCD—A1B1C1D1中,侧棱A1A⊥底面ABCD,AB∥DC,AB⊥AD,AD=CD=1,AA1=AB=2,E为棱AA1的中点.

(1)证明B1C1⊥CE;
(2)求二面角B1­CE­C1的正弦值;
(3)设点M在线段C1E上,且直线AM与平面ADD1A1所成角的正弦值为,求线段AM的长.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,在直三棱柱中,D、E分别是BC和的中点,已知AB=AC=AA1=4,ÐBAC=90°.

(1)求证:⊥平面
(2)求二面角的余弦值;
(3)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设m,n是两条不同直线,α,β是两个不同的平面,下列命题正确的是(  )
A.m∥α,n∥β且α∥β,则m∥n
B.m⊥α,n⊥β且α⊥β,则m⊥n
C.m⊥α,n?β,m⊥n,则α⊥β
D.m?α,n?α,m∥β,n∥β,则α∥β

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

是不同的直线,是不同的平面,有以下四个命题:
①若  
②若 
③若  
④若 
其中真命题的序号是(    )
A.①③B.①④C.②③D.②④

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知PA垂直于正方形ABCD所在平面,连接PB、PC、PD、AC、BD,则下列垂直关系中正确的序号是              .

①平面平面PBC ②平面平面PAD ③平面平面PCD

查看答案和解析>>

同步练习册答案