精英家教网 > 高中数学 > 题目详情
已知函数f(x)=aln(x+1)-
2xx+1
+b的图象与直线x+y-2=0
相切于点(0,c).
求:
(1)实数a的值;
(2)函数f(x)的单调区间和极小值.
分析:(1)由f′(x)=
a
x+1
-
2
(x+1)2
和f(x)在x=0处的切线方程为y=-x+2,能求出a.
(2)由点(0,c)在直线x+y-2=0上,推导出c=2,由点(0,2)在f(x)=aln(x+1)-
2x
x+1
+b
的图象上,推导出b=2,由此能求出函数f(x)的单调区间和极小值.
解答:解:(1)∵f(x)=aln(x+1)-
2x
x+1
+b

f′(x)=
a
x+1
-
2
(x+1)2

∵f(x)在x=0处的切线方程为y=-x+2,
∴f'(0)=a-2=-1,即a=1
(2)∵点(0,c)在直线x+y-2=0上,
∴c-2=0,即c=2,
∵点(0,2)在f(x)=aln(x+1)-
2x
x+1
+b
的图象上,
∴f(0)=b=2,
f(x)=ln(x+1)-
2x
x+1
+2(x>-1)

由(1)得:f′(x)=
1
x+1
-
2
(x+1)2
=
x-1
(x+1)2
(x>-1)

当f'(x)>0时,得x>1;当f'(x)<0时,得-1<x<1,
∴f(x)在(1,+∞)上单调递增,在(-1,1)上单调递减,
∴当x=1时,f(x)有极小值f(1)=1+ln2.
点评:本题考查实数值的求法,考查函数的单调区间和极小值的求法,解题时要认真审题,注意导数性质和等价转化思想的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x+1

(1)求证:不论a为何实数f(x)总是为增函数;
(2)确定a的值,使f(x)为奇函数;
(3)当f(x)为奇函数时,求f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)
a-x  ,x≤0
1  ,0<x≤3
(x-5)2-a,x>3
(a>0且a≠1)图象经过点Q(8,6).
(1)求a的值,并在直线坐标系中画出函数f(x)的大致图象;
(2)求函数f(t)-9的零点;
(3)设q(t)=f(t+1)-f(t)(t∈R),求函数q(t)的单调递增区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
1
2x+1
,若f(x)为奇函数,则a=(  )
A、
1
2
B、2
C、
1
3
D、3

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
a(x-1)x2
,其中a>0.
(I)求函数f(x)的单调区间;
(II)若直线x-y-1=0是曲线y=f(x)的切线,求实数a的值;
(III)设g(x)=xlnx-x2f(x),求g(x)在区间[1,e]上的最小值.(其中e为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=a-
12x-1
,(a∈R)
(1)求f(x)的定义域;
(2)若f(x)为奇函数,求a的值;
(3)考察f(x)在定义域上单调性的情况,并证明你的结论.

查看答案和解析>>

同步练习册答案