精英家教网 > 高中数学 > 题目详情

已知数列{an}中,a1=2,a2=3,其前n项和Sn满足Sn+1+Sn-1=2Sn+1(n≥2,n∈N*).
(Ⅰ)求证:数列{an}为等差数列,并求{an}的通项公式;
(Ⅱ)设bn=2n-an,求数列{bn}的前n项和Tn

解:(Ⅰ)证明:由已知:(sn+1-sn)-(sn-sn-1)=1 (n≥2,n∈N*),
即an+1-an=1 (n≥2,n∈N*)且a2-a1=1.
∴数列{an}是以a1=2为首项,公差为1的等差数列.
∴an=n+1.(6分)
(Ⅱ)由(Ⅰ)知bn=(n+1)•2n,它的前n项和为Tn
Tn=2•21+3•22+4•23++n•2n-1+(n+1)•2n(1)
2Tn=2•22+3•23+4•24++n•2n+(n+1)•2n+1(2)
(1)-(2):
-Tn=2•21+22+23+24++2n-(n+1)•2n+1
=
=-n•2n+1
∴Tn=n•2n+1(13分)
分析:(Ⅰ)把Sn+1+Sn-1=2Sn+1整理为:(sn+1-sn)-(sn-sn-1)=1,即an+1-an=1 即可说明数列{an}为等差数列;再结合其首项和公差即可求出{an}的通项公式;
(Ⅱ)因为数列{bn}的通项公式为一等差数列乘一等比数列组合而成的新数列,故直接利用错位相减法求和即可.
点评:本题主要考查等差关系的确定以及利用错位相减法求数列的和.错位相减法适用于一等差数列乘一等比数列组合而成的新数列.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1-an=
1
3n+1
(n∈N*)
,则
lim
n→∞
an
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,an+1=
an
1+2an
,则{an}的通项公式an=
1
2n-1
1
2n-1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,a1+2a2+3a3+…+nan=
n+1
2
an+1(n∈N*)

(1)求数列{an}的通项公式;
(2)求数列{
2n
an
}
的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=
1
2
Sn
为数列的前n项和,且Sn
1
an
的一个等比中项为n(n∈N*
),则
lim
n→∞
Sn
=
1
1

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,2nan+1=(n+1)an,则数列{an}的通项公式为(  )
A、
n
2n
B、
n
2n-1
C、
n
2n-1
D、
n+1
2n

查看答案和解析>>

同步练习册答案