精英家教网 > 高中数学 > 题目详情

【题目】(2017湖北部分重点中学高三联考)从编号为001,002,…,500的500个产品中用系统抽样的方法抽取一个样本,已知样本编号从小到大依次为007,032,…,则样本中最大的编号应该为(  )

A. 483 B. 482

C. 481 D. 480

【答案】B

【解析】间隔为32-7=25,所以每组的容量为25,共有20组,所以样本中最大的编号应该为7+19×25=482.故选B.

点睛: 假设要从容量为N的总体中抽取容量为n的样本:(1)编号:先将总体的N个个体编号;

(2)分段:确定段数,对编号进行分段,当(n是样本容量)是整数时,取k=;(3)确定首个个体:在第1段用简单随机抽样确定第一个个体编号l(l≤k);(4)获取样本:按照一定的规则抽取样本,通常是将l加上间隔k得到第2个个体编号l+k ,再加k得到第3个个体编号l+2k,依次进行下去,直到获取整个样本率.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在圆上任取一点,过点轴的垂线段为垂足.,当点在圆上运动时,

(1)求点的轨迹的方程;

(2) 若,直线交曲线两点(点与点不重合),且满足.为坐标原点,点满足,证明直线过定点,并求直线的斜率的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知各项为正数的等比数列{an}满足:a7=a6+2a5 , 若存在两项am、an使得 ,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某煤矿发生透水事故时,作业区有若干人员被困.救援队从入口进入之后有L1L2两条巷道通往作业区(如下图),L1巷道有A1A2A3三个易堵塞点,各点被堵塞的概率都是L2巷道有B1B2两个易堵塞点,被堵塞的概率分别为.

(1)求L1巷道中,三个易堵塞点最多有一个被堵塞的概率;

(2)若L2巷道中堵塞点个数为X,求X的分布列及均值E(X),并按照“平均堵塞点少的巷道是较好的抢险路线”的标准,请你帮助救援队选择一条抢险路线,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C:)的离心率为,且经过点,四边形的四个顶点都在椭圆上,对角线所在直线的斜率为,且.

(1)求椭圆C的方程;

(2)求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点 ,椭圆 )的离心率为 是椭圆 的右焦点,直线 的斜率为 为坐标原点.

(1)求 的方程;

(2)设过点 的动直线 相交于 两点,当 的面积最大时,求 的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=sin(x+ )+sin(x﹣ )+cosx+a(a∈R,a是常数).
(1)求函数f(x)的最小正周期;
(2)若a=0,作出y=f(x)在[﹣π,π]上的图象;
(3)若x∈[﹣ ]时,f(x)的最大值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列{an}的各项均为正数,a1=t,k∈N* , k≥1,p>0,an+an+1+an+2+…+an+k=6pn
(1)当k=1,p=5时,若数列{an}成等比数列,求t的值;
(2)设数列{an}是一个等比数列,求{an}的公比及t(用p、k的代数式表示);
(3)当k=1,t=1时,设Tn=a1+ + +…+ + ,参照教材上推导等比数列前n项和公式的推导方法,求证:{ Tn ﹣6n}是一个常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】日,“国际教育信息化大会”在山东青岛开幕.为了解哪些人更关注“国际教育信息化大会”,某机构随机抽取了年龄在-岁之间的人进行调查,并按年龄绘制成频率分布直方图,如图所示,其分组区间为:.把年龄落在区间内的人分别称为“青少年”和“中老年”.

关注

不关注

合计

青少年

中老年

合计

(1)根据频率分布直方图求样本的中位数保留两位小数和众数;

(2)根据已知条件完成列联表,并判断能否有的把握认为“中老年”比“青少年”更加关注“国际教育信息化大会”;

查看答案和解析>>

同步练习册答案