精英家教网 > 高中数学 > 题目详情
一个空间几何体的三视图均为全等的等腰直角三角形,如果直角三角形的斜边边长为,则这个几何体的体积为( )
A.
B.6
C.
D.12
【答案】分析:由已知中一个空间几何体的三视图均为全等的等腰直角三角形,我们可得这个空间几何体为正方体的一个角,其体积等于a(其中a为对应正方体的棱长),根据直角三角形的斜边边长为,我们算出直角三角形的直角边长(即对应正方体的棱长),进而可以求出这个几何体的体积.
解答:解:由已知中个空间几何体的三视图均为全等的等腰直角三角形,
可得这个几何体是一个三棱锥,且有三条棱互相垂直
又由直角三角形的斜边边长为
则直角三角形的直角边长为
则这个几何体的体积V==
故选A
点评:本题考查的知识点是由三视图求体积,其中根据空间几何体的三视图均为全等的等腰直角三角形,判断出出该几何体的形状,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

一个空间几何体的三视图均是边长为
2
的正方形,则以该空间几何体各个面的中心为顶点的多面体的体积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

一个空间几何体的三视图均为全等的等腰直角三角形,如果直角三角形的斜边边长为2
3
,则这个几何体的体积为(  )
A、
6
B、6
C、2
6
D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

一个空间几何体的三视图均为边长是
3
的正方形,则该空间几何体外接球体积为(  )

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个空间几何体的三视图均为边长是
3
的正方形,则该空间几何体外接球体积为(  )
A.2
3
π
B.9πC.
9
2
π
D.
3
2
π

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

一个空间几何体的三视图均为边长是
3
的正方形,则该空间几何体外接球体积为(  )
A.2
3
π
B.9πC.
9
2
π
D.
3
2
π

查看答案和解析>>

同步练习册答案