精英家教网 > 高中数学 > 题目详情

【题目】已知一曲线C是与两个定点O(0,0),A(3,0)的距离比为 的点的轨迹.
(1)求曲线C的方程,并指出曲线类型;
(2)过(﹣2,2)的直线l与曲线C相交于M,N,且|MN|=2 ,求直线l的方程.

【答案】
(1)解:设M(x,y)是曲线上任意的一点,点M在曲线上的条件是

由两点间距离公式,上式用坐标表示为

整理得:x2+y2+2x﹣3=0,(x+1)2+y2=4

曲线C是以(﹣1,0)为圆心,以2为半径的圆.


(2)解:当直线l斜率不存在时, ,∴x=﹣2

当直线l斜率存在时,设直线l的方程为y﹣2=k(x+2),即kx﹣y+2k+2=0,

设圆心到此直线的距离为 ,∴

所以直线l的方程:

直线l的方程:∴x=﹣2或3x+4y﹣2=0.


【解析】(1)设M(x,y)是曲线上任意的一点,点M在曲线上的条件是 ,由两点间距离公式,转化求解轨迹方程即可.(2)当直线l斜率不存在时, ,求出x.当直线l斜率存在时,设直线l的方程为y﹣2=k(x+2),即kx﹣y+2k+2=0,求出圆心到此直线的距离为 ,求出k,即可得到所求的直线l的方程.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知g(x)=sin2x,将g(x)的图象向左平移 个单位长度,再将图象上各点的横坐标缩短到原来的 ,得到函数f(x)的图象,则(
A.
B. ??
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】抽样调查某大型机器设备使用年限x和该年支出维修费用y(万元),得到数据如表

使用年限x

2

3

4

5

6

维修费用y

2.2

3.8

5.5

6.5

7.0

部分数据分析如下 =25, yi=112.3, =90
参考公式:线性回归直线方程为
(1)求线性回归方程;
(2)由(1)中结论预测第10年所支出的维修费用.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】天水市第一次联考后,某校对甲、乙两个文科班的数学考试成绩进行分析,

规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,

得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人为优秀的概率为.

优秀

非优秀

合计

甲班

10

乙班

30

合计

110

(1)请完成上面的列联表;

(2)根据列联表的数据,若按99.9%的可靠性要求,能否认为成绩与班级有关系

(3)若按下面的方法从甲班优秀的学生中抽取一人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号。试求抽到9号或10号的概率。

参考公式与临界值表:

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设0<a<1,定义a1=1+a, , 求证:对任意n∈N , 有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知△ABC的顶点A(0,1),AB边上的中线CD所在的直线方程为2x﹣2y﹣1=0,AC边上的高BH所在直线的方程为y=0.
(1)求△ABC的顶点B、C的坐标;
(2)若圆M经过不同的三点A、B、P(m,0),且斜率为1的直线与圆M相切于点P,求圆M的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知二次函数都满足,设函数 ).

(Ⅰ)求的表达式;

(Ⅱ)若,使成立,求实数m的取值范围;

(Ⅲ)设 ,求证:对于

恒有

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=2x+m21x
(1)若函数f(x)为奇函数,求实数m的值;
(2)若函数f(x)在区间(1,+∞)上是单调递增函数,求实数m的取值范围;
(3)是否存在实数a,使得函数f(x)的图象关于点A(a,0)对称,若存在,求实数a的值,若不存在,请说明理由.
注:点M(x1 , y1),N(x2 , y2)的中点坐标为( ).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数g(x)=log2 (x>0),关于方程|g(x)|2+m|g(x)|+2m+3=0有三个不同实数解,则实数m的取值范围为(
A.(﹣∞,4﹣2 )∪(4 ,+∞)
B.(4﹣2 ,4
C.(﹣ ,﹣
D.(﹣ ,﹣ ]

查看答案和解析>>

同步练习册答案