精英家教网 > 高中数学 > 题目详情

【题目】如图,设O是平行四边形ABCD的两条对角线AC,BD的交点,下列向量组:
;②
;④
其中可作为这个平行四边形所在平面的一组基底的是( ).

A.①②
B.③④
C.①③
D.①④

【答案】D
【解析】平面内任意两个不共线的向量都可以作为基底,
不共线,可作为基底;
为共线向量,不可作为基底;
是两个不共线的向量,可作为基底;
在同一条直线上,是共线向量,不可作为基底.
综上,只有①③中的向量可以作为基底,
故选 C.
【考点精析】掌握平面向量的基本定理及其意义是解答本题的根本,需要知道如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数y=2sin( ﹣2x),x∈[0,π])为增函数的区间是(
A.[0, ]
B.[ ]
C.[ ]
D.[ ,π]

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线C:x2=4y的焦点为F,过点F且斜率为1的直线与抛物线相交于M、N两点,设直线l是抛物线C的切线,且l∥MN,P为l上一点,则 的最小值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】解答题。
(1)解方程4x﹣2x﹣2=0.
(2)求不等式 log2(2x+3)>log2(5x﹣6);
(3)求函数y=( ,x∈[0,5)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=3|x|+log3|x|.
(1)判断函数的奇偶性,并加以证明;
(2)说明函数f(x)在(0,+∞)上的单调性,并利用单调性定义证明;
(3)若 f(2a)<28,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=kax﹣ax(a>0且a≠1,k∈R),f(x)是定义域为R的奇函数.
(1)求k的值
(2)已知f(1)= ,函数g(x)=a2x+a2x﹣2f(x),x∈[0,1],求g(x)的值域;
(3)在第(2)问的条件下,试问是否存在正整数λ,使得f(2x)≥λf(x)对任意x∈[﹣ ]恒成立?若存在,请求出所有的正整数λ;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】要测量底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40m,则电视塔的高度为(
A.10 m
B.20m
C.20 m
D.40m

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个匀速旋转的摩天轮每12分钟转一周,最低点距地面2米,最高点距地面18米,P是摩天轮轮周上一定点,从P在最低点时开始计时,则16分钟后P点距地面的高度是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数g(x)=(a+1)x2+1(a>0)的图象恒过定点A,且点A又在函数 的图象上.
(1)求实数a的值;
(2)解不等式f(x)<
(3)函数h(x)=|g(x+2)﹣2|的图象与直线y=2b有两个不同的交点时,求b的取值范围.

查看答案和解析>>

同步练习册答案