精英家教网 > 高中数学 > 题目详情
18.已知等差数列{an}的前n项和为Sn,并且a2=2,S5=15,数列{bn}满足:${b_1}=\frac{1}{2}$,${b_{n+1}}=\frac{n+1}{n}{b_n}(n∈{N^*})$,记数列{bn}的前n项和为Tn
(1)求数列{an}的通项公式an及前n项和为Sn
(2)求数列{bn}的通项公式bn及前n项和为Tn;求Tn的最值并求此时n的序号.

分析 (1)设等差数列{an}的公差为d,由a2=2,S5=15,可得a1+d=2,5a1+$\frac{5×4}{2}$×d=15,解得a1,d即可得出.
(2){bn}满足:${b_1}=\frac{1}{2}$,${b_{n+1}}=\frac{n+1}{n}{b_n}(n∈{N^*})$,可得$\frac{{b}_{n+1}}{n+1}=\frac{{b}_{n}}{n}$=…=$\frac{{b}_{1}}{1}$=$\frac{1}{2}$,即可得出.

解答 解:(1)设等差数列{an}的公差为d,
∵a2=2,S5=15,∴a1+d=2,5a1+$\frac{5×4}{2}$×d=15,
解得a1=d=1.
∴${a_n}=n,{S_n}=\frac{{{n^2}+n}}{2}$.
(2)数列{bn}满足:${b_1}=\frac{1}{2}$,${b_{n+1}}=\frac{n+1}{n}{b_n}(n∈{N^*})$,
∴$\frac{{b}_{n+1}}{n+1}=\frac{{b}_{n}}{n}$=…=$\frac{{b}_{1}}{1}$=$\frac{1}{2}$,
∴bn=$\frac{1}{2}$n,
∴数列{bn}的前n项和Tn=$\frac{n(\frac{1}{2}+\frac{1}{2}n)}{2}$=$\frac{{n}^{2}+n}{4}$.当n=1是Tn有最小值$\frac{1}{2}$.

点评 本题考查了数列递推关系、等差数列与等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.5个人分4张无座足球票,每人至多分一张,而且票必须分完,那么不同分发总数是(  )
A.5B.10C.20D.120

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知复数z=$\frac{(1-i)^{2}-3(1+i)}{2-i}$,若az+b=1-i,
(1)求z与$\overline{z}$;              
(2)求实数a,b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数$f(x)=2(x-1){e^x}+m(\frac{{3{x^2}}}{2}-\frac{3}{2})$,m≤2e2
(Ⅰ)当$m=-\frac{1}{3}$时,求f(x)的单调区间;
(Ⅱ)若x≥1时,有f(x)≥mx2lnx恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知随机变量X服从正态分布N(2,σ2),且P(0≤X≤2)=0.3,则P(X>4)=0.2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f(x)=x3-6ax的单调递减区间是(-2,2),则a的取值范围是(  )
A.(-∞,0]B.[-2,2]C.{2}D.[2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.在△ABC中,角A、B、C的对边分别为a、b、c.若$\frac{a}{cosA}=\frac{b}{2cosB}=\frac{c}{3cosC}$,求
(1)tanA:tanB:tanC的值;
(2)求角A的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知定义在R上的函数f(x)=m-$\frac{2}{{5}^{x}+1}$.
(1)判断函数f(x)的单调性递增;
(2)若f(x)是奇函数,求m的值1;
(3)若f(x)的值域为D,且D⊆[-3,1],求m的取值范围[-1,1].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知点M(3,y0)是抛物线y2=2px(0<p<6)上一点,且M到抛物线焦点的距离是M到直线$x=\frac{p}{2}$的距离的2倍,则p等于(  )
A.1B.2C.$\frac{3}{2}$D.3

查看答案和解析>>

同步练习册答案