精英家教网 > 高中数学 > 题目详情
8.为了了解某同学的数学学习情况,对他的6次数学测试成绩(满分100分)进行统计,作出的茎叶图如图所示,则该同学数学成绩的中位数为84.

分析 根据茎叶图中的数据,计算数据的中位数即可.

解答 解:根据茎叶图,得到6次数学成绩为:78,83,83,85,90,91,中位数是$\frac{83+85}{2}$=84,
故答案为:84.

点评 本题考查了茎叶图的应用问题,解题时应根据茎叶图中的数据进行有关的计算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.已知数列{an}中,a1=3,a2=5,且对于任意的大于2的正整数n,有an=an-1-an-2,则a2015=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.已知定义在R上的奇函数f(x)满足f(x-2)=-f(x),则f(2006)的值为(  )
A.2006B.1003C.0D.不确定

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=kx+m,当x∈[a1,b1]时,f(x)的值域为[a2,b2],当x∈[a2,b2]时,f(x)的值域为[a3,b3],依此类推,一般地,当x∈[an-1,bn-1]时,f(x)的值域为[an,bn],其中k、m为常数,且a1=0,b1=1.
(1)若k=1,求数列{an},{bn}的通项公式;
(2)若m=2,问是否存在常数k>0,使得数列{bn}满足$\underset{lim}{n→∞}$bn=4?若存在,求k的值;若不存在,请说明理由;
(3)若k<0,设数列{an},{bn}的前n项和分别为Sn,Tn,求(T1+T2+…+T2014)-(S1+S2+…+S2014).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,数轴x,y的交点为O,夹角为θ,与x轴、y轴正向同向的单位向量分别是$\overrightarrow{e_1},\overrightarrow{e_2}$.由平面向量基本定理,对于平面内的任一向量$\overrightarrow{OP}$,存在唯一的有序实数对(x,y),使得$\overrightarrow{OP}=x\overrightarrow{e_1}+y\overrightarrow{e_2}$,我们把(x,y)叫做点P在斜坐标系xOy中的坐标(以下各点的坐标都指在斜坐标系xOy中的坐标).
(1)若θ=90°,$\overrightarrow{OP}$为单位向量,且$\overrightarrow{OP}$与$\overrightarrow{e_1}$的夹角为120°,求点P的坐标;
(2)若θ=45°,点P的坐标为$({1,\sqrt{2}})$,求向量$\overrightarrow{OP}$与$\overrightarrow{e_1}$的夹角;
(3)若θ=60°,求过点A(2,1)的直线l的方程,使得原点O到直线l的距离最大.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知数列{an}的首项a1=$\frac{3}{4}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+1}$,n=1,2,3…
(1)证明:数列{$\frac{1}{{a}_{n}}$-1}是等比数列;
(2)是否存在互不相等的正整数m,s,t成等差数列,且am-1,as-1,at-1成等比数列?如果存在,求出所有符合条件的m,s,t,如果不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知集合$A=\left\{{x\left|{\frac{{{x^2}-x-6}}{x+1}≤0}\right.}\right\}$,集合B={x||x+2a|≤a+1,a∈R}.
(1)求集合A与集合B;
(2)若A∩B=B,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.圆心在直线2x+y=0上,且与直线x-y+1=0切与点P(2,-1)的圆的标准方程(x-1)2+(y+2)2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点P为圆C:x2+y2-4x-4y+4=0上的动点,点P到某直线l的最大距离为5,若在直线l上任取一点A作圆C的切线AB,切点为B,则AB的最小值是$\sqrt{5}$.

查看答案和解析>>

同步练习册答案