精英家教网 > 高中数学 > 题目详情

【题目】为研究某药品的疗效,选取若干名志愿者进行临床试验,所有志愿者的舒张压数据(单位:)的分组区间为,将其按从左到右的顺序分别编号为第一组,第二组,......,第五组.如图是根据试验数据制成的频率分布直方图.已知第一组与第二组共有人,第三组中没有疗效的有人,则第三组中有疗效的人数为( )

A. B. C. D.

【答案】C

【解析】

由频率分布直方图得第一组与第二组的频率和为0.4,再由第一组与第二组共有20人,求出样本总数n50人,由第三组的频率为0.36,求出第三组共有18人,由此能求出第三组中有疗效的人数.

由频率分布直方图得第一组与第二组的频率和为:1﹣(0.36+0.16+0.08 10.4,∵第一组与第二组共有20人,

∴样本总数n50人,∵第三组的频率为0.36,∴第三组共有:50×0.3618人,

∵第三组没有疗效的有6人,∴第三组中有疗效的人数为:18612人.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在数列{an}中,已知a1=2,an+1=3an+2n﹣1.
(1)求证:数列{an+n}为等比数列;
(2)记bn=an+(1﹣λ)n,且数列{bn}的前n项和为Tn , 若T3为数列{Tn}中的最小项,求λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平面五边形是轴对称图形(如图1)BC为对称轴,ADCDAD=AB=1,将此五边形沿BC折叠,使平面ABCD平面BCEF,得到如图2所示的空间图形,对此空间图形解答下列问题.

1)证明:AF平面DEC

2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】南航集团与波音公司2018年2月在广州签署协议,双方合作的客改货项目落户广州空港经济区.根据协议,双方将在维修技术转让、支持项目、管理培训等方面开展战略合作.现组织者对招募的100名服务志愿者培训后,组织一次知识竞赛,将所得成绩制成如下频率分布直方图(假定每个分数段内的成绩均匀分布),组织者计划对成绩前20名的参赛者进行奖励.

(1)试求受奖励的分数线;

(2)从受奖励的20人中利用分层抽样抽取5人,再从抽取的5人中抽取2人在主会场服务,试求2人成绩都在90分以上(含90分)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知平行四边形ABCD中.∠BAD=120°,AB=1,AD=2,点P是线段BC上的一个动点,则 的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明跟父母、爷爷奶奶一同参加《中国诗词大会》的现场录制,5人坐成一排.若小明的父母至少有一人与他相邻,则不同坐法的总数为

A. 60 B. 72 C. 84 D. 96

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4﹣4:坐标系与参数方程 曲线C1的参数方程为 (α为参数),在以原点O为极点,x轴的正半轴为极轴的极坐标系中,曲线C2的极坐标方程为ρcos2θ=sinθ.
(1)求曲线C1的极坐标方程和曲线C2的直角坐标方程;
(2)若射线l:y=kx(x≥0)与曲线C1 , C2的交点分别为A,B(A,B异于原点),当斜率k∈(1, ]时,求|OA||OB|的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面ABCD是矩形,平面ABCD,,E,F是线段BC,AB的中点.

证明:

在线段PA上确定点G,使得平面PED,请说明理由.

查看答案和解析>>

同步练习册答案