精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆C: 经过点 ,左右焦点分别为F1、F2 , 圆x2+y2=2与直线x+y+b=0相交所得弦长为2.
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)设Q是椭圆C上不在x轴上的一个动点,O为坐标原点,过点F2作OQ的平行线交椭圆C于M、N两个不同的点
⑴试探究 的值是否为一个常数?若是,求出这个常数;若不是,请说明理由.
⑵记△QF2M的面积为S1 , △OF2N的面积为S2 , 令S=S1+S2 , 求S的最大值.

【答案】解:(Ⅰ)由已知可得:圆心到直线x+y+b=0的距离为1,即 ,所以

又椭圆C经过点 ,所以 ,得到

所以椭圆C的标准方程为

(Ⅱ)(1)设Q(x0,y0),M(x1,y1),N(x2,y2),OQ的方程为x=my,

则MN的方程为x=my+1.

所以 =

,得(2m2+3)y2+4my﹣4=0,

所以 =

= =

所以

⑵∵MN∥OQ,∴△QF2M的面积=△OF2M的面积,∴S=S1+S2=S△OMN

∵O到直线MN:x=my+1的距离

,则m2=t2﹣1(t≥1),

∴g(t)在[1,+∞)上为增函数,g(t)min=g(1)=3,


【解析】(Ⅰ)先根据圆与直线的位置关系求得b的值,再根据椭圆上点的坐标求得a,即可求得椭圆的标准方程;(Ⅱ)(1)先设出相关点的坐标并用其表示所需的相关直线方程,再根据题意中直线的相关特点表示|OQ|与 | M N |,进而求得相关的比值;(2)本小题的关键在于将两个三角形面积的和化为一个三角形的和,表示出以后利用函数思想求得面积的最大值.
【考点精析】掌握直线与圆的三种位置关系是解答本题的根本,需要知道直线与圆有三种位置关系:无公共点为相离;有两个公共点为相交,这条直线叫做圆的割线;圆与直线有唯一公共点为相切,这条直线叫做圆的切线,这个唯一的公共点叫做切点.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】将函数y=cos(2x+ )的图象沿x轴向右平移φ(φ>0)个单位,得到一个偶函数的图象,则φ的一个可能取值为(
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数f(x)=sin(ωx+φ)(ω>0,0<φ<π)的图象与 的图象的对称轴相同,则f(x)的一个递增区间为(  )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,椭圆C1 的左、右焦点分别为F1 , F2 , 其中F2也是抛物线C2:y2=4x的焦点,点P为C1与C2在第一象限的交点,且
(Ⅰ)求椭圆的方程;
(Ⅱ)过F2且与坐标轴不垂直的直线交椭圆于M、N两点,若线段OF2上存在定点T(t,0)使得以TM、TN为邻边的四边形是菱形,求t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若对任意的x∈D,均有g(x)≤f(x)≤h(x)成立,则称函数f(x)为函数g(x)到函数h(x)在区间D上的“任性函数”.已知函数f(x)=kx,g(x)=x2﹣2x,h(x)=(x+1)(lnx+1),且f(x)是g(x)到h(x)在区间[1,e]上的“任性函数”,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,输出的x的值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1的参数方程是 (φ为参数),以坐标原点为极点,x轴的正半轴为极轴建立坐标系,曲线C2的坐标系方程是ρ=2,正方形ABCD的顶点都在C2上,且A,B,C,D依逆时针次序排列,点A的极坐标为(2, ).
(1)求点A,B,C,D的直角坐标;
(2)设P为C1上任意一点,求t=|PA|2+|PB|2+|PC|2+|PD|2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】有一块以点O为圆心,半径为2百米的圆形草坪,草坪内距离O点 百米的D点有一用于灌溉的水笼头,现准备过点D修一条笔直小路交草坪圆周于A,B两点,为了方便居民散步,同时修建小路OA,OB,其中小路的宽度忽略不计.

(1)若要使修建的小路的费用最省,试求小路的最短长度;
(2)若要在△ABO区域内(含边界)规划出一块圆形的场地用于老年人跳广场舞,试求这块圆形广场的最大面积.(结果保留根号和π)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某科技公司生产一种手机加密芯片,其质量按测试指标划分为:指标大于或等于70为合格品,小于70为次品.现随机抽取这种芯片共120件进行检测,检测结果统计如表:

测试指标

[50,60)

[60,70)

[70,80)

[80,90)

[90,100]

芯片数量(件)

8

22

45

37

8

已知生产一件芯片,若是合格品可盈利400元,若是次品则亏损50元.
(Ⅰ)试估计生产一件芯片为合格品的概率;并求生产3件芯片所获得的利润不少于700元的概率.
(Ⅱ)记ξ为生产4件芯片所得的总利润,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案