精英家教网 > 高中数学 > 题目详情
精英家教网如图,在平面直角坐标系xOy中,椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)的左焦点为F,右顶点为A,动点M为右准线上一点(异于右准线与x轴的交点),设线段FM交椭圆C于点P,已知椭圆C的离心率为
2
3
,点M的横坐标为
9
2

(1)求椭圆C的标准方程;
(2)设直线PA的斜率为k1,直线MA的斜率为k2,求k1•k2的取值范围.
分析:(1)由已知解得
a=3
c=2.
.由此可知椭圆C的标准方程为
x2
9
+
y2
5
=1

(2)设点P(x1,y1)(-2<x1<3),点M(
9
2
y2)
,由点F、P、M三点共线,知点M(
9
2
13y1
2(x1+2)
)
.k1•k2=
y1
x1-3
×
13y1
3(x1+2)
=
13y12
3(x1+2)(x1-3)
.由此可导出k1•k2的取值范围是(-∞,-
26
9
)
解答:解:(1)由已知,得
c
a
=
2
3
a2
c
=
9
2
(2分)
解得
a=3
c=2.
a2=9
b2=5.
(4分)
∴椭圆C的标准方程为
x2
9
+
y2
5
=1
;(6分)
(2)设点P(x1,y1)(-2<x1<3),
点M(
9
2
y2)
,∵点F、P、M三点共线,x1≠-2,
y1
x1+2
=
y2
13
2
y2=
13y1
2(x1+2)
,∴点M(
9
2
13y1
2(x1+2)
)
.(8分)
k1=
y1
x1-3
k2=
13y1
3(x1+2)

∴k1•k2=
y1
x1-3
×
13y1
3(x1+2)
=
13y12
3(x1+2)(x1-3)
.(10分)
∵点P在椭圆C上,∴
x12
9
+
y12
5
=1
,∴y12=-
5
9
(x12-9)

∴k1•k2=
13×(-
5
9
)(x12-9)
3(x1+2)(x1-3)
=-
65
27
×
x1+3
x1+2
=-
65
27
×(1+
1
x1+2
)
.(12分)
∵-2<x1<3,∴k1k2<-
26
9
.∴k1•k2的取值范围是(-∞,-
26
9
)
.(14分)
点评:本题考查直线的圆锥曲线的位置关系,解题时要认真审题,仔细解答.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△OAB中,点P是线段OB及线段AB延长线所围成的阴影区域(含边界)的任意一点,且
OP
=x
OA
+y
OB
则在直角坐标平面内,实数对(x,y)所示的区域在直线y=4的下侧部分的面积是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

1、如图,在直角坐标平面内有一个边长为a,中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为
偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在直角坐标平面内有一个边长为a、中心在原点O的正六边形ABCDEF,AB∥Ox.直线L:y=kx+t(k为常数)与正六边形交于M、N两点,记△OMN的面积为S,则函数S=f(t)的奇偶性为(  )
A、偶函数B、奇函数C、不是奇函数,也不是偶函数D、奇偶性与k有关

查看答案和解析>>

科目:高中数学 来源: 题型:

(2008•海珠区一模)如图,在直角坐标平面内,射线OT落在60°的终边上,任作一条射线OA,OA落在∠xOT内的概率是
1
6
1
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在平面直角坐标中,一定长m的线段,其端点AB分别在x轴、y轴上滑动,设点M满足(λ是大于0,且不等于1的常数).

试问:是否存在定点E、F,使|ME|、|MB|、|MF|成等差数列?若存在,求出E、F的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案