【题目】已知{an}为等差数列,前n项和为Sn(n∈N*),{bn}是首项为2的等比数列,且公比大于0,b2+b3=12,b3=a4﹣2a1 , S11=11b4 . (13分)
(Ⅰ)求{an}和{bn}的通项公式;
(Ⅱ)求数列{a2nbn}的前n项和(n∈N*).
【答案】(Ⅰ)解:设等差数列{an}的公差为d,等比数列{bn}的公比为q.由已知b2+b3=12,得 ,而b1=2,所以q2+q﹣6=0.又因为q>0,解得q=2.所以, .
由b3=a4﹣2a1 , 可得3d﹣a1=8.
由S11=11b4 , 可得a1+5d=16,联立①②,解得a1=1,d=3,
由此可得an=3n﹣2.
所以,{an}的通项公式为an=3n﹣2,{bn}的通项公式为 .
(Ⅱ)解:设数列{a2nbn}的前n项和为Tn , 由a2n=6n﹣2,有 , ,
上述两式相减,得 = .
得 .
所以,数列{a2nbn}的前n项和为(3n﹣4)2n+2+16.
【解析】(Ⅰ)设等差数列{an}的公差为d,等比数列{bn}的公比为q.通过b2+b3=12,求出q,得到 .然后求出公差d,推出an=3n﹣2.
(Ⅱ)设数列{a2nbn}的前n项和为Tn , 利用错位相减法,转化求解数列{a2nbn}的前n项和即可.
科目:高中数学 来源: 题型:
【题目】假设两个分类变量X与Y,它们的可能取值分别为{x1,x2}和{y1,y2},其列联表为:
分类 | y1 | y2 | 总计 |
x1 | a | b | a+b |
x2 | c | d | c+d |
总计 | a+c | b+d | a+b+c+d |
对于同一样本的以下各组数据,能说明X与Y有关的可能性最大的一组为( )
A. a=5,b=4,c=3,d=2 B. a=5,b=3,c=4,d=2
C. a=2,b=3,c=4,d=5 D. a=2,b=3,c=5,d=4
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】将一枚骰子先后抛掷两次,观察向上的点数.
(1)求点数之和是5的概率;
(2)设a,b分别是将一枚骰子先后抛掷两次向上的点数,求等式成立的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=|2x﹣a|+|x﹣1|.
(1)当a=3时,求不等式f(x)≥2的解集;
(2)若f(x)≥5﹣x对x∈R恒成立,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆 + =1(a>b>0)的左焦点为F(﹣c,0),右顶点为A,点E的坐标为(0,c),△EFA的面积为 .(14分)
(I)求椭圆的离心率;
(II)设点Q在线段AE上,|FQ|= c,延长线段FQ与椭圆交于点P,点M,N在x轴上,PM∥QN,且直线PM与直线QN间的距离为c,四边形PQNM的面积为3c.
(i)求直线FP的斜率;
(ii)求椭圆的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】“奶茶妹妹”对某时间段的奶茶销售量及其价格进行调查,统计出售价x元和销售量y杯之间的一组数据如下表所示:
价格x | 5 | 5.5 | 6.5 | 7 |
销售量y | 12 | 10 | 6 | 4 |
通过分析,发现销售量y对奶茶的价格x具有线性相关关系.
(1)求销售量y对奶茶的价格x的回归直线方程;
注:在回归直线y= 中, , ﹣ . =146.5.
(2)欲使销售量为13杯,则价格应定为多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设数列{an}的前n项和为Sn满足2Sn=an+1﹣2n+1+1,n∈N* , 且a1 , a2+5,a3成等差数列.
(1)求a1的值;
(2)求数列{an}的通项公式.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,正方形ABCD的边长为2,O为AD的中点,射线OP从OA出发,绕着点O顺时针方向旋转至OD,在旋转的过程中,记∠AOP为x(x∈[0,π]),OP所经过正方形ABCD内的区域(阴影部分)的面积S=f(x),那么对于函数f(x)有以下三个结论:
①f( )= ;
②任意x∈[0, ],都有f( ﹣x)+f( +x)=4;
③任意x1 , x2∈( ,π),且x1≠x2 , 都有 <0.
其中所有正确结论的序号是 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com