精英家教网 > 高中数学 > 题目详情
(2013•汕头一模)在△ABC中,内角A,B,C的对边分别是a,b,c,若
sinC
sinA
=2
,b2-a2=
3
2
ac,则cosB=(  )
分析:根据正弦定理及
sinC
sinA
=2
得c=2a,结合余弦定理b2=a2+c2-2accosB算出b2=5a2+4a2cosB,再由题中边a、b的等式化简得到b2=4a2,两式联解即可得到cosB的值.
解答:解:∵
sinC
sinA
=2
,∴由正弦定理,得
c
a
=2,得c=2a
∵由余弦定理,得b2=a2+c2-2accosB,
∴b2=5a2+4a2cosB
∵b2-a2=
3
2
ac,∴b2=a2+
3
2
ac=4a2
因此,4a2=5a2+4a2cosB,解之得cosB=
1
4

故选:C
点评:本题给出三角形ABC中的边角关系,求cosB的值,着重考查了运用正余弦定理解三角形和二元方程组的解法等知识,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

(2013•汕头一模)已知函数f(x)=x2-lnx.
(1)求曲线f(x)在点(1,f(1))处的切线方程;
(2)求函数f(x)的单调递减区间:
(3)设函数g(x)=f(x)-x2+ax,a>0,若x∈(O,e]时,g(x)的最小值是3,求实数a的值.(e是为自然对数的底数)

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)广东省汕头市日前提出,要提升市民素质和城市文明程度,促进经济发展有大的提速,努力实现“幸福汕头”的共建共享.现随机抽取50位市民,对他们的幸福指数进行统计分析,得到如下分布表:
幸福级别 非常幸福 幸福 不知道 不幸福
幸福指数(分) 90 60 30 0
人数(个) 19 21 7 3
(I)求这50位市民幸福指数的数学期望(即平均值);
(11)以这50人为样本的幸福指数来估计全市市民的总体幸福指数,若从全市市民(人数很多)任选3人,记ξ表示抽到幸福级别为“非常幸福或幸福”市民人数.求ξ的分布列;
(III)从这50位市民中,先随机选一个人.记他的幸福指数为m,然后再随机选另一个人,记他的幸福指数为n,求n<m+60的概率P.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)若曲线y=
x
与直线x=a,y=0所围成封闭图形的面积为a2.则正实数a=
4
9
4
9

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)△ABC中内角A,B,C的对边分别为a,b,c,向量
m
=(2sin
A
2
3
)
n
=(cosA,2cos2
A
4
-1)
,且
m
n

(I)求角A的大小;
(II)若a=
7
且△ABC的面积为
3
3
2
,求b十c的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2013•汕头一模)已知函数f1(x)=e|x-a|f2(x)=ebx
(I)若f(x)=f1(x)+f2(x)-bf2(-x),是否存在a,b∈R,y=f(x)为偶函数.如果存在.请举例并证明你的结论,如果不存在,请说明理由;
〔II)若a=2,b=1.求函数g(x)=f1(x)+f2(x)在R上的单调区间;
(III )对于给定的实数?x0∈[0,1],对?x∈[0,1],有|f1(x)-f2(x0)|<1成立.求a的取值范围.

查看答案和解析>>

同步练习册答案