精英家教网 > 高中数学 > 题目详情

【题目】给出下列命题:
①存在实数x,使sinx+cosx=
②若α,β是第一象限角,且α>β,则cosα<cosβ;
③函数y=sin( x+ )是偶函数;
④函数y=sin2x的图象向左平移 个单位,得到函数y=cos2x的图象.
其中正确命题的序号是(把正确命题的序号都填上)

【答案】③④
【解析】解:对命题进行一一判断:
①sinx+cosx= sin(x+ )≤ ,故不存在x是的sinx+cosx= ,故①错误;
②若α,β是第一象限角,且α>β,不妨取α=390°,β=30°,可知cosα=cosβ,故②错误;
③函数y=sin( x+ )=cos x是偶函数;故③正确;
④函数y=sin2x的图象向左平移 个单位,得到函数y=sin(2(x+ ))=sin(2x+ )=cos2x的图象,故④正确.
所以答案是:③④.
【考点精析】解答此题的关键在于理解命题的真假判断与应用的相关知识,掌握两个命题互为逆否命题,它们有相同的真假性;两个命题为互逆命题或互否命题,它们的真假性没有关系.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆,在扇形OAB内随机取一点,则此点取自阴影部分的概率是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,曲线C1的参数方程为: (α为参数),以原点为极点,x轴的正半轴为极轴,并取与直角坐标系相同的长度单位,建立极坐标系,曲线C2的极坐标方程为:ρ=cosθ. (Ⅰ)求曲线C2的直角坐标方程;
(Ⅱ)若P,Q分别是曲线C1和C2上的任意一点,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= 若存在实数b,使函数g(x)=f(x)﹣b有两个零点,则a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某校为了了解学生对周末家庭作业量的态度,拟采用分层抽样的方法分别从高一、高二、高三的高中生中随机抽取一个容量为200的样本进行调查,已知从700名高一、高二学生中共抽取了140名学生,那么该校有高三学生名.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】 ,且|kb|=| kb|(k>0).

(Ⅰ)用k表示数量积

(Ⅱ)求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点A(2sinx,﹣cosx)、B( cosx,2cosx),记f(x)=
(1)若x0是函数y=f(x)﹣1的零点,求tanx0的值;
(2)求f(x)在区间[ ]上的最值及对应的x的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在一次耐力和体能测试之后,某校对其甲、乙、丙、丁四位学生的耐力成绩()和体能成绩()进行回归分析,求得回归直线方程为.由于某种原因,成绩表(如下表所示)中缺失了乙的耐力和体能成绩.

耐力成绩(X)

7.5

m

8

8.5

体能成绩(Y)

8

n

8.5

9.5

综合素质

15.5

16

16.5

18

(Ⅰ)请设法还原乙的耐力成绩和体能成绩

(Ⅱ)在区域性校际学生身体综合素质比赛中,由甲、乙、丙、丁四位学生组成学校代表队参赛.共举行3场比赛,每场比赛均由赛事主办方从学校代表中随机抽两人参赛,每场比赛所抽的选手中,只要有一名选手的综合素质分高于16分,就能为所在学校赢得一枚荣誉奖章.若记比赛中赢得荣誉奖章的枚数为,试根据上表所提供数据,预测该校所获奖章数的分布列与数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】甲、乙、丙、丁四个物体同时从某一点出发向同一个方向运动,其路程fi(x)(i=1,2,3,4)关于时间x(x≥0)的函数关系式分别为f1(x)=2x﹣1,f2(x)=x3 , f3(x)=x,f4(x)=log2(x+1),有以下结论:
①当x>1时,甲走在最前面;
②当x>1时,乙走在最前面;
③当0<x<1时,丁走在最前面,当x>1时,丁走在最前面;
④丙不可能走在最前面,也不可能走在最后面;
⑤如果它们一直运动下去,最终走在最前面的是甲.
其中,正确结论的序号为(把正确结论的序号都填上,多填或少填均不得分)

查看答案和解析>>

同步练习册答案