精英家教网 > 高中数学 > 题目详情

【题目】抛物线的焦点为F,过点F的直线交抛物线于AB两点.

1)若,求直线AB的斜率;

2)设点M在线段AB上运动,原点O关于点M的对称点为C,求四边形OACB面积的最小值.

【答案】1;(2)面积最小值是4

【解析】

试题本题主要考查抛物线的标准方程及其几何性质、直线与圆锥曲线的位置关系、直线的斜率等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,依题意F1,0),设直线AB的方程为.将直线AB的方程与抛物线的方程联立,得,由此能够求出直线AB的斜率;第二问,由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于,由此能求出四边形OACB的面积的最小值.

试题解析:(1)依题意知F1,0),设直线AB的方程为.将直线AB的方程与抛物线的方程联立,消去x.设,所以因为,所以联立,消去,得

所以直线AB的斜率是

2)由点C与原点O关于点M对称,得M是线段OC的中点,从而点O与点C到直线AB的距离相等,所以四边形OACB的面积等于

因为

所以当m0时,四边形OACB的面积最小,最小值是4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,直线与抛物线(常数)相交于不同的两点,且为定值),线段的中点为,与直线平行的切线的切点为(不与抛物线对称轴平行或重合且与抛物线只有一个公共点的直线称为抛物线的切线,这个公共点为切点).

1)用表示出点、点的坐标,并证明垂直于轴;

2)求的面积,证明的面积与无关,只与有关;

3)小张所在的兴趣小组完成上面两个小题后,小张连,再作与平行的切线,切点分别为,小张马上写出了的面积,由此小张求出了直线与抛物线围成的面积,你认为小张能做到吗?请你说出理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出下列命题

1)若一条直线与两条直线都相交,那么这三条直线共面;

2)若三条直线两两平行,那么这三条直线共面;

3)若直线与直线异面,直线与直线异面,那么直线与直线异面;

4)若直线与直线垂直,直线与直线垂直,那么直线与直线平行;

其中正确的命题个数有(

A.0B.1C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着人民生活水平的日益提高,某小区居民拥有私家车的数量与日俱增.由于该小区建成时间较早,没有配套建造地下停车场,小区内无序停放的车辆造成了交通的拥堵.该小区的物业公司统计了近五年小区登记在册的私家车数量(累计值,如147表示2016年小区登记在册的所有车辆数,其余意义相同),得到如下数据:

编号

1

2

3

4

5

年份

2014

2015

2016

2017

2018

数量(单位:辆)

37

104

147

196

216

1)若私家车的数量与年份编号满足线性相关关系,求关于的线性回归方程,并预测2020年该小区的私家车数量;

2)小区于2018年底完成了基础设施改造,划设了120个停车位.为解决小区车辆乱停乱放的问题,加强小区管理,物业公司决定禁止无车位的车辆进入小区.由于车位有限,物业公司决定在2019年度采用网络竞拍的方式将车位对业主出租,租期一年,竞拍方案如下:①截至2018年己登记在册的私家车业主拥有竞拍资格;②每车至多中请一个车位,由车主在竞拍网站上提出申请并给出自己的报价;③根据物价部门的规定,竞价不得超过1200元;④申请阶段截止后,将所有申请的业主报价自高到低排列,排在前120位的业主以其报价成交;⑤若最后出现并列的报价,则以提出申请的时间在前的业主成交,为预测本次竞拍的成交最低价,物业公司随机抽取了有竞拍资格的40位业主,进行了竞拍意向的调查,并对他们的拟报竞价进行了统计,得到如图频率分布直方图:

i)求所抽取的业主中有意向竞拍报价不低于1000元的人数;

ii)如果所有符合条件的车主均参与竞拍,利用样本估计总体的思想,请你据此预测至少需要报价多少元才能竞拍车位成功?(精确到整数)

参考公式及数据:对于一组数据,其回归方程的斜率和截距的最小二乘估计分别为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】阅读下列有关光线的入射与反射的两个事实现象:现象(1):光线经平面镜反射满足入射角与反射角相等(如图);现象(2);光线从椭圆的一个焦点出发经椭圆反射后通过另一个焦点(如图).试结合,上述事实现象完成下列问题:

(Ⅰ)有一椭圆型台球桌,长轴长为2a,短轴长为2b.将一放置于焦点处的桌球击出.经过球桌边缘的反射(假设球的反射充全符合现象(2)),后第一次返回到该焦点时所经过的路程记为S,求S的值(用ab表示);

(Ⅱ)结论:椭圆上任点Px0y0)处的切线的方程为.记椭圆C的方程为C,在直线x4上任一点M向椭圆C引切线,切点分别为AB.求证:直线lAB恒过定点:

(Ⅲ)过点T10)的直线l(直线l斜率不为0)与椭圆C交于PQ两点,是否存在定点Ss0),使得直线SPSQ斜率之积为定值,若存在求出S坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解小学生的体能情况,抽取了某小学同年级部分学生进行跳绳测试,将所得的数据整理后画出频率分布直方图,已知图中从左到右的前三个小组的频率分别是0.10.30.4第一小组的频数是5.

1)求第四小组的频率和该组参加这次测试的学生人数;

2)在这次测试中,学生跳绳次数的中位效落在第几小组内?

3)从第一小组中选出2人,第三小组中选出3人组成队伍代表学校参加区里的小学生体质测试,在测试的某一环节,需要从这5人中任选两人参加测试,求这两人来自同一小组的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,圆轴相切于点,与轴正半轴交于两点的上方),且.

1)求圆的标准方程;

2)过点作任一条直线与圆相交于两点.

①求证:为定值,并求出这个定值;

②求的面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若直线y=a分别与直线y=2x-3,曲线y=ex-xx≥0)交于点AB,则|AB|的最小值为(  )

A. B. C. eD.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥中,,PA=PD=CD=BC=1.

(1)求证:平面平面

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案