精英家教网 > 高中数学 > 题目详情
13.将△ABC的三个内角A、B、C所对的边依次记为a、b、c,若B=2A,且$\frac{b}{a}$∈($\sqrt{2}$,$\sqrt{3}$),则A的取值范围是$(\frac{π}{6},\frac{π}{4})$.

分析 根据二倍角的正弦公式、正弦定理化简可得cosA=$\frac{b}{2a}$,结合条件和余弦函数的性质求出角A的范围.

解答 解:∵B=2A,∴由正弦定理得:$\frac{a}{sinA}=\frac{b}{sinB}$,则$\frac{a}{sinA}=\frac{b}{2sinAcosA}$,
由sinA≠0得,cosA=$\frac{b}{2a}$,
∵$\frac{b}{a}$∈($\sqrt{2}$,$\sqrt{3}$),∴cosA=$\frac{b}{2a}$∈($\frac{\sqrt{2}}{2}$,$\frac{\sqrt{3}}{2}$),
又0<A<π,则A∈$(\frac{π}{6},\frac{π}{4})$,
故答案为:$(\frac{π}{6},\frac{π}{4})$.

点评 本题考查二倍角的正弦公式,正弦定理,以及余弦函数的性质,注意内角的范围,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

3.已知bn=$\frac{n}{n+1}$,Sn=$\frac{n-4}{2(n-2)}$.求实数a为何值时,4a•Sn<bn恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.复数z1,z2互为共轭复数,若z1=1-2i,则z1-z2=(  )
A.-4iB.4iC.0D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.某校高二年级有4个文科班和5个理科班,现要从中任意挑选3个班参加学校校庆表演,若选出的班级中至少有一个文科班和一个理科班,则不同的选法种数是(  )
A.70B.84C.140D.420

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知向量$\overrightarrow{a}$=($\sqrt{2}$cosωx,1),$\overrightarrow{b}$=(2sin(ωx+$\frac{π}{4}$),-1)(其中$\frac{1}{4}$≤ω≤$\frac{3}{2}$),函数f(x)=$\overrightarrow{a}$•$\overrightarrow{b}$,且f(x)图象的一条对称轴为x=$\frac{5π}{8}$.
(1)求f($\frac{3}{4}$π)的值;
(2)若f($\frac{a}{2}-\frac{π}{8}$)=$\frac{\sqrt{2}}{3}$,f($\frac{β}{2}$-$\frac{π}{8}$)=$\frac{2\sqrt{3}}{3}$,且$α,β∈(-\frac{π}{2},\frac{π}{2})$,求cos(α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知$\overrightarrow{a}$=(1,0),$\overrightarrow{b}$=(2,1).
(Ⅰ)求|$\overrightarrow{a}$+3$\overrightarrow{b}$|;
(Ⅱ)当k为何实数时,$\overrightarrow{a}$-k$\overrightarrow{b}$与$\overrightarrow{a}$+3$\overrightarrow{b}$平行.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.在数列{an},{bn}中,a1=2,b1=4,且an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列(n∈N*).
(1)求a2,a3,a4与b2,b3,b4的值;
(2)猜想数列{an},{bn}的通项公式(不需要证明).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知α的终边在第一象限,则角$\frac{α}{2}$的终边在(  )
A.第一象限B.第二象限C.第一或第三象限D.第一或第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.命题p:?x∈R,2x<3x;命题q:?x∈R,$\sqrt{x}=lo{g}_{\frac{1}{2}}x$,则下列命题中为真命题的是(  )
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

同步练习册答案