精英家教网 > 高中数学 > 题目详情
16.已知等比数列{an}的前n项和为Sn,且an是Sn与2的等差中项,等差数列{bn}中,b1=2,点P(bn,bn+1}在一次函数y=x+2的图象上.
(1)求数列{an},{bn}的通项an和bn
(2)设cn=an•bn,求数列{cn}的前n项和Tn

分析 (1)利用递推关系与等比数列的通项公式可得an,再利用等差数列的通项公式可得bn
(2)利用“错位相减法”与等比数列的求和公式即可得出.

解答 解:(1)由2an=Sn+2得:2a1=S1+2;即2a1=a1+2,解得a1=2.
同理可得:2a2=S2+2;2a1=a1+a2+2,解得a2=4;
由2an=Sn+2┅①得2an-1=Sn-1+2┅②;(n≥2)
将两式相减得:2an-2an-1=Sn-Sn-1;2an-2an-1=an;an=2an-1(n≥2)
所以:当n≥2时:an=${a}_{2}{2}^{n-2}$=2n;n=1时也成立.
故:an=2n
又由等差数列{bn}中,b1=2,点P(bn,bn+1)在直线y=x+2上.
得:bn+1=bn+2,且b1=2,所以:bn=2+2(n-1)=2n;           (6分)
(2)${c_n}={a_n}{b_n}=n{2^{n+1}}$;
数列{cn}的前n项和Tn=22+2×23+3×24+…+n•2n+1
2Tn=23+2×24+…+(n-1)×2n+1+n•2n+2
∴-Tn=22+23+…+2n+1-n•2n+2=$\frac{4({2}^{n}-1)}{2-1}$-n•2n+2
可得:Tn=(n-1)•2n+2+4.    (12分)

点评 本题考查了等差数列与等比数列的通项公式与求和公式、“错位相减法”、数列递推关系,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.已知($\sqrt{x}$+$\frac{2}{\sqrt{x}}$)n展开式中第二、三、四项的二项式系数成等差数列.
(Ⅰ)求n的值;
(Ⅱ)此展开式中是否有常数项?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若复数z满足$\frac{i}{z-1}=\frac{1}{2}$(i为虚数单位),则z=1+2i.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f(x)=$\frac{1}{\sqrt{lo{g}_{\frac{1}{2}}x}}$的定义域为(0,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.化简或求值:
(1)($\frac{27}{8}$)${\;}^{-\frac{2}{3}}$-($\frac{49}{9}$)0.5+(0.008)${\;}^{-\frac{2}{3}}$×$\frac{2}{25}$
(2)计算$\frac{lg5•lg8000+{(lg{2}^{\sqrt{3}})}^{2}}{lg600-\frac{1}{2}lg0.036-\frac{1}{2}lg0.1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.若O为坐标原点,直线y=2b与双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左右两支分别交于A、B两点,直线OA的斜率为-1,则该双曲线的渐近线的斜率为(  )
A.±$\frac{\sqrt{5}}{2}$B.±$\frac{3}{2}$C.±$\frac{\sqrt{30}}{5}$D.±$\frac{3\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.已知tanα=3,则cos2α=$\frac{1}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.下列命题:
(1)“若am2≥bm2,则a≥b”的否命题;
(2)“全等三角形面积相等”的逆命题;
(3)“若a>1,则关于x的不等式ax2≥0的解集为R”的逆否命题;
其中正确命题的个数是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知各项为正数的数列{an}的前n项和Sn满足:Sn>1,6Sn=(an+1)(an+2)(n∈N*
(1)求数列{an}的通项公式;
(2)求证:$\frac{1}{{a}_{1}{a}_{2}}$+$\frac{1}{a{{\;}_{2}a}_{3}}$+…+$\frac{1}{a{{\;}_{n}a}_{n+1}}$<$\frac{1}{6}$.

查看答案和解析>>

同步练习册答案