精英家教网 > 高中数学 > 题目详情

【题目】已知各项均为正整数的数列{an}的前n项和为Sn,满足:Sn﹣1+kan=tan2﹣1,n≥2,n∈N*(其中k,t为常数).

(1)若k=,t=,数列{an}是等差数列,求a1的值;

(2)若数列{an}是等比数列,求证:k<t.

【答案】(1)a1=1+,(2)见解析

【解析】

(1)由k=,t=,可得(n≥2),设等差数列{an}的公差为d,分别令n=2,n=3,利用等差数列的性质即可得出.

(2)令公比为q>0,则an+1=anq,利用递推关系可得1=(q﹣1)[tan(q+1)﹣k],易知q≠1,从而可得t=0,从而证明.

(1)∵k=,t=,∴(n≥2),设等差数列{an}的公差为d,

令n=2,则,令n=3,则

两式相减可得:,∵an>0,∴a3﹣a2=2=d.

,且d=2,化为﹣4=0,a1>0.

解得a1=1+

(2)∵Sn﹣1+kan=tan2﹣1①,n≥2,n∈N*,所以Sn+kan+1﹣1②,

②-①得an+kan+1﹣kan,∴an=(an+1﹣an)[t(an+1+an)﹣k],

令公比为q>0,则an+1=anq,∴(q﹣1)k+1=tan(q2﹣1),

∴1=(q﹣1)[tan(q+1)﹣k];∵对任意n≥2,n∈N*

1=(q﹣1)[tan(q+1)﹣k]成立;∴q≠1,∴an不是一个常数;

∴t=0,∴Sn﹣1+kan=﹣1,且{an}是各项均为正整数的数列,∴k<0,

故k<t.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】12分)已知等差数列{an}中,a1=1a3=﹣3

)求数列{an}的通项公式;

)若数列{an}的前k项和Sk=﹣35,求k的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过抛物线的焦点且斜率为1的直线交抛物线两点,且.

(Ⅰ)求抛物线的方程;

(Ⅱ)抛物线上一点,直线(其中)与抛物线交于两个不同的点(均不与点重合).设直线的斜率分别为.直线是否过定点?如果是,请求出所有定点;如果不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】椭圆中心为坐标原点O,对称轴为坐标轴,且过M2 N(,1)两点,

I)求椭圆的方程;

II)是否存在圆心在原点的圆,使得该圆的任意一条切线与椭圆C恒有两个交点A,B,?若存在,写出该圆的方程,并求|AB |的取值范围,若不存在说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】意大利数学家列昂纳多·斐波那契是第一个研究了印度和阿拉伯数学理论的欧洲人,斐波那契数列被誉为是最美的数列,斐波那契数列满足:.若将数列的每一项按照下图方法放进格子里,每一小格子的边长为1,记前项所占的格子的面积之和为,每段螺旋线与其所在的正方形所围成的扇形面积为,则下列结论正确的是(

A.B.

C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的左右焦点分别为,离心率为是椭圆上的一个动点,且面积的最大值为.

(1)求椭圆的方程;

(2)设直线斜率为,且与椭圆的另一个交点为,是否存在点,使得若存在,求的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥中,底面ABCDE分别为棱PAPC的中点,M是线段AD的中点,N是线段BC的中点,

求证:平面BDE

求直线MN到平面BDE的距离;

求二面角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线与抛物线交于两点,且的面积为16(为坐标原点).

(1)求的方程.

(2)直线经过的焦点不与轴垂直,交于两点,若线段的垂直平分线与轴交于点,试问在轴上是否存在点,使为定值?若存在,求该定值及的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案