精英家教网 > 高中数学 > 题目详情
9.设抛物线y2=-12x上一点P到y轴的距离是1,则点P到该抛物线焦点的距离是4.

分析 求得抛物线的焦点坐标及准线方程,由抛物线的定义可知:P到焦点的距离等于P到准线的距离,则丨PF丨=4.

解答 解:由抛物线焦点F(-3,0),准线方程x=3,
由P到y轴的距离是1,则P到准线x=3的距离d=4,
则P到焦点的距离等于P到准线的距离,则丨PF丨=4,
故答案为:4.

点评 本题考查抛物线的定义,考查抛物线的焦点坐标及准线方程,考查计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.函数f(x)=$\frac{1}{{\sqrt{x+1}}}$+$\sqrt{4-2x}$的定义域为(  )
A.[一1,2]B.(一1,2]C.[2,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.函数f(x)=($\frac{1-{2}^{x}}{1+{2}^{x}}$)cosx的图象大致为(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.一质点按规律s=2t3运动,则其在t=1时的瞬时速度为6m/s.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an} 的前n项和为${s_n}=6{n^2}-5n-4$,求{an}的通项公式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,$-\frac{π}{2}$<φ<$\frac{π}{2}$)的部分图象如图所示.
(1)求函数f(x)的解析式
(2)如何由函数y=2sinx的图象通过适当的变换得到函数f(x)的图象,写出变换过程.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知命题:$\end{array}}\right\}$⇒a∥b,在“横线”处补上一个条件使其构成真命题(其中a、b为直线,α,β为平面),这个条件是a∥β.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.数列{an}中,a1=1,当n≥2时,其前n项和为Sn,满足${S}_{n}^{2}$=an(Sn-$\frac{1}{2}$).
(Ⅰ)求证:数列{$\frac{1}{{S}_{n}}$}是等差数列,并求Sn的表达式;
(Ⅱ)设bn=$\frac{{S}_{n}}{2n+1}$,数列{bn}的前n项和为Tn,不等式Tn≥$\frac{1}{18}$(m2-5m)对所有的n∈N*恒成立,求正整数m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.随着经济社会的发展,消费者对食品安全的关注度越来越高,通过随机询问某地区110名居民在购买食品时是否看生产日期与保质期等内容,得到如下的列联表:
年龄与看生产日期与保质期列联表 单位:名
60岁以下60岁以上总计
看生产日期与保质期503080
不看生产日期与保质期102030
总计6050110
(1)从这50名60岁以上居民中按是否看生产日期与保质期采取分层抽样,抽取一个容量为5的样本,问样本中看与不看生产日期与保质期的60岁以上居民各有多少名?
(2)从(1)中的5名居民样本中随机选取两名作深度访谈,求选到看与不看生产日期与保质期的60岁以上居民各1名的概率;
(3)根据以上列联表,问有多大把握认为“年龄与在购买食品时看生产日期与保质期”有关?
附:下面的临界值表供参考:
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828

查看答案和解析>>

同步练习册答案