精英家教网 > 高中数学 > 题目详情

【题目】如图,梯形ABCD内接于⊙O,AD∥BC,过点C作⊙O的切线,交BD的延长线于点P,交AD的延长线于点E.

(1)求证:AB2=DEBC;
(2)若BD=9,AB=6,BC=9,求切线PC的长.

【答案】
(1)解:∵AD∥BC

∴AB=DC,∠EDC=∠BCD,

又PC与⊙O相切,∴∠ECD=∠DBC,

∴△CDE∽△BCD,∴

∴CD2=DEBC,即AB2=DEBC


(2)解:由(1)知,

∵△PDE∽△PBC,

又∵PB﹣PD=9,


【解析】对于(1)求证:AB2=DEBC,根据题目可以判断出梯形为等腰梯形,故AB=CD,然后根据角的相等证△CDE相似于△BCD,根据相似的性质即可得到答案.
对于(2)由BD=9,AB=6,BC=9,求切线PC的长.根据弦切公式可得PC2=PDPB,然后根据相似三角形边成比例的性质求出PD和PB代入即可求得答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】如图,在三棱柱中,侧面是边长为2的正方形,点是棱的中点.

1)证明:平面.

2)若三棱锥的体积为4,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=sin(2x+φ),其中φ为实数,若f(x)≤|f( )|对x∈R恒成立,且f( )>f(π),则f(x)的单调递增区间是(
A.[kπ﹣ ,kπ+ ](k∈Z)
B.[kπ,kπ+ ](k∈Z)
C.[kπ+ ,kπ+ ](k∈Z)
D.[kπ﹣ ,kπ](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】若数列{an}前n项和为Sn , a1=a2=2,且满足Sn+Sn+1+Sn+2=3n2+6n+5,则S47等于

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】几个孩子在一棵枯树上玩耍,他们均不慎失足下落.已知

甲在下落的过程中依次撞击到树枝

)乙在下落的过程中依次撞击到树枝

丙在下落的过程中依次撞击到树枝

丁在下落的过程中依次撞击到树枝

戊在下落的过程中依次撞击到树枝

倒霉和李华在下落的过程中撞到了从的所有树枝,根据以上信息,在李华下落的过程中,和这根树枝不同的撞击次序有(

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数f(x)=|x+m|.
(Ⅰ) 解关于m的不等式f(1)+f(﹣2)≥5;
(Ⅱ)当x≠0时,证明:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在2018年高校自主招生期间,某校把学生的平时成绩按“百分制”折算,选出前名学生,并对这名学生按成绩分组,第一组,第二组,第三组,第四组,第五组.如图为频率分布直方图的一部分,其中第五组、第一组、第四组、第二组、第三组的人数依次成等差数列,且第四组的人数为60.

(1)请写出第一、二、三、五组的人数,并在图中补全频率分布直方图;

(2)若大学决定在成绩高的第3,4,5组中用分层抽样的方法抽取6名学生进行面试.

①若大学本次面试中有三位考官,规定获得至少两位考官的认可即为面试成功,且各考官面试结果相互独立.已知甲同学已经被抽中,并且通过这三位考官面试的概率依次为,求甲同学面试成功的概率;

②若大学决定在这6名学生中随机抽取3名学生接受考官的面试,第3组有名学生被考官面试,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某工厂对一批新产品的长度(单位:)进行检测,如下图是检测结果的频率分布直方图,据此估计这批产品的中位数与平均数分别为( )

A.20,22.5B.22.5,25C.22.5,22.75D.22.75,22.75

查看答案和解析>>

同步练习册答案