(1)试证明函数y=f(x)是R上的单调减函数;
(2)试证明函数y=f(x)是奇函数;
(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.
剖析:(1)可根据函数单调性的定义进行论证,考虑证明过程中如何利用题设条件.
(2)可根据函数奇偶性的定义进行证明,应由条件先得到f(0)=0后,再利用条件f(x1+x2)=f(x1)+f(x2)中x1、x2的任意性,可使结论得证.
(3)由(1)的结论可知f(m)、f(n)分别是函数y=f(x)在[m、n]上的最大值与最小值,故求出f(m)与f(n)就可得所求值域.
(1)证明:任取x1、x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)],
于是由题设条件f(x+x′)=f(x)+f(x′)可知f(x2)=f(x1)+f(x2-x1).
∵x2>x1,
∴x2-x1>0.
∴f(x2-x1)<0.
∴f(x2)=f(x1)+f(x2-x1)<f(x1).
故函数y=f(x)是单调减函数.
(2)证明:∵对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),
∴若令x=x′=0,则f(0)=f(0)+f(0).
∴f(0)=0.
再令x′=-x,
则可得f(0)=f(x)+f(-x).
∵f(0)=0,
∴f(-x)=-f(x).
故y=f(x)是奇函数.
(3)解:由函数y=f(x)是R上的单调减函数,
∴y=f(x)在[m,n]上也为单调减函数.
∴y=f(x)在[m,n]上的最大值为f(m),最小值为f(n).
∴f(n)=f[1+(n-1)]=f(1)+f(n-1)=2f(1)+f(n-2)=…=nf(1).
同理,f(m)=mf(1).
∵f(3)=-3,
∴f(3)=3f(1)=-3.
∴f(1)=-1.
∴f(m)=-m,f(n)=-n.
因此,函数y=f(x)在[m,n]上的值域为[-n,-m].
讲评:(1)满足题设条件f(x+x′)=f(x)+f(x′)的函数,只要其定义域是关于原点对称的,它就为奇函数.
(2)若将题设条件中的x>0,均有f(x)<0改成均有f(x)>0,则函数f(x)就是R上的单调增函数.
(3)若题设条件中的m、n∈Z去掉,则我们就无法求出f(m)与f(n)的值,故m、n∈Z不可少.
科目:高中数学 来源: 题型:
1 |
2 |
1 |
2011 |
2 |
2011 |
3 |
2011 |
4 |
2011 |
2010 |
2011 |
A、1005 | B、2010 |
C、2011 | D、4020 |
查看答案和解析>>
科目:高中数学 来源: 题型:
lnx |
x |
1 |
e |
查看答案和解析>>
科目:高中数学 来源: 题型:
1-x | 3 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com