精英家教网 > 高中数学 > 题目详情
已知函数y=f(x)的定义域为R,对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且对任意x>0,都有f(x)<0,f(3)=-3.

(1)试证明函数y=f(x)是R上的单调减函数;

(2)试证明函数y=f(x)是奇函数;

(3)试求函数y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.

剖析:(1)可根据函数单调性的定义进行论证,考虑证明过程中如何利用题设条件.

    (2)可根据函数奇偶性的定义进行证明,应由条件先得到f(0)=0后,再利用条件f(x1+x2)=f(x1)+f(x2)中x1、x2的任意性,可使结论得证.

    (3)由(1)的结论可知f(m)、f(n)分别是函数y=f(x)在[m、n]上的最大值与最小值,故求出f(m)与f(n)就可得所求值域.

(1)证明:任取x1、x2∈R,且x1<x2,f(x2)=f[x1+(x2-x1)],

    于是由题设条件f(x+x′)=f(x)+f(x′)可知f(x2)=f(x1)+f(x2-x1).

    ∵x2>x1,

    ∴x2-x1>0.

    ∴f(x2-x1)<0.

    ∴f(x2)=f(x1)+f(x2-x1)<f(x1).

    故函数y=f(x)是单调减函数.

(2)证明:∵对任意x、x′∈R均有f(x+x′)=f(x)+f(x′),

    ∴若令x=x′=0,则f(0)=f(0)+f(0).

    ∴f(0)=0.

    再令x′=-x,

    则可得f(0)=f(x)+f(-x).

    ∵f(0)=0,

    ∴f(-x)=-f(x).

    故y=f(x)是奇函数.

(3)解:由函数y=f(x)是R上的单调减函数,

    ∴y=f(x)在[m,n]上也为单调减函数.

    ∴y=f(x)在[m,n]上的最大值为f(m),最小值为f(n).

    ∴f(n)=f[1+(n-1)]=f(1)+f(n-1)=2f(1)+f(n-2)=…=nf(1).

    同理,f(m)=mf(1).

    ∵f(3)=-3,

    ∴f(3)=3f(1)=-3.

    ∴f(1)=-1.

    ∴f(m)=-m,f(n)=-n.

    因此,函数y=f(x)在[m,n]上的值域为[-n,-m].

讲评:(1)满足题设条件f(x+x′)=f(x)+f(x′)的函数,只要其定义域是关于原点对称的,它就为奇函数.

    (2)若将题设条件中的x>0,均有f(x)<0改成均有f(x)>0,则函数f(x)就是R上的单调增函数.

    (3)若题设条件中的m、n∈Z去掉,则我们就无法求出f(m)与f(n)的值,故m、n∈Z不可少.


练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数y=f(x+
1
2
)
为奇函数,设g(x)=f(x)+1,则g(
1
2011
)+g(
2
2011
)+g(
3
2011
)+g(
4
2011
)+…+g(
2010
2011
)
=(  )
A、1005B、2010
C、2011D、4020

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
lnx
x

(1)求函数y=f(x)的图象在x=
1
e
处的切线方程;
(2)求y=f(x)的最大值;
(3)比较20092010与20102009的大小,并说明为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)=
lnx
x

(1)求函数y=f(x)的图象在x=
1
e
处的切线方程;
(2)求y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=
f(x)
ex
(x∈R)
满足f′(x)>f(x),则f(1)与ef(0)的大小关系为(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

给出如下命题:
命题p:已知函数y=f(x)=
1-x3
,则|f(a)|<2(其中f(a)表示函数y=f(x)在x=a时的函数值);
命题q:集合A={x|x2+(a+2)x+1=0,x∈R},B={x|x>0},且A∩B=∅;
求实数a的取值范围,使命题p,q中有且只有一个为真命题.

查看答案和解析>>

同步练习册答案