精英家教网 > 高中数学 > 题目详情

16


解析:

:原式=

   

注:在化简三角函数式过程中,除利用三角变换公式,还需用到代数变形公式,如本题平方差公式。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ln(ex+a)(a为常数)是实数集R上的奇函数,函数g(x)=λf(x)+sinx是区间[-1,1]上的减函数.
(1)求g(x)在x∈[-1,1]上的最大值;
(2)若g(x)≤t2+λt+1对?x∈[-1,1]及λ∈(-∞,-1]恒成立,求t的取值范围;
(3)讨论关于x的方程
lnxf(x)
=x2-2ex+m的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

从数列{an}中取出部分项,并将它们按原来的顺序组成一个数列,称之为数列{an}的一个子数列.设数列{an}是一个首项为a1、公差为d(d≠0)的无穷等差数列.
(1)若a1,a2,a5成等比数列,求其公比q.
(2)若a1=7d,从数列{an}中取出第2项、第6项作为一个等比数列的第1项、第2项,试问该数列是否为{an}的无穷等比子数列,请说明理由.
(3)若a1=1,从数列{an}中取出第1项、第m(m≥2)项(设am=t)作为一个等比数列的第1项、第2项,试问当且仅当t为何值时,该数列为{an}的无穷等比子数列,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设矩阵A=
1
2
3
2
3
2
-
1
2
,求矩阵A的特征向量.

查看答案和解析>>

科目:高中数学 来源: 题型:

三个同学对问题“关于x的不等式x2+25+|x3-5x2|≥ax在[1,12]上恒成立,求实数a的取值范围”提出各自的解题思路.
甲说:“只须不等式左边的最小值不小于右边的最大值”.
乙说:“把不等式变形为左边含变量x的函数,右边仅含常数,求函数的最值”.
丙说:“把不等式两边看成关于x的函数,作出函数图象”.
参考上述解题思路,你认为他们所讨论的问题的正确结论,即a的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}是等差数列,且a1=2,a1+a2+a3=12.
(1)求数列{an}的通项公式;
(2)令bn=anxn(x∈R),求数列{bn}前n项和的公式.

查看答案和解析>>

同步练习册答案