精英家教网 > 高中数学 > 题目详情
2.已知f(x)=x3+3ax2+bx+a2(a>1)在x=-1时有极值0.
(1)求常数a,b的值; 
(2)求f(x)的单调区间.  
(3)求f(x)的极值.

分析 (1)已知函数f(x)=x3+3ax2+bx+a2在x=1处有极值0,即f(-1)=0,f′(-1)=0,通过求导函数,再代入列方程组,即可解得a、b的值;
(2)分别解不等式f′(x)>0和f′(x)<0,即可得函数f(x)的单调增区间与单调递减区间.
(3)利用(1)(2)的结果直接求解函数的极值即可.

解答 解:(1)∵f′(x)=3x2+6ax+b,(a>1)函数f(x)=x3+3ax2+bx+a2在x=-1处有极值0,
∴f(-1)=0,f′(-1)=0
∴-1+3a-b+a2=0,3-6a+b=0.
解得a=2,b=9.
(2)f(x)=x3+6x2+9x+4,
∴f′(x)=3x2+12x+9
∴由f′(x)=3x2+12x+9>0得x∈(-∞,-3)或(-1,+∞)
由f′(x)=3x2+12x+9<0得x∈(-3,-1)
∴函数f(x)的单调增区间为:(-∞,-3),(-1,+∞),减区间为:(-3,-1).
(3)由(2)可知f(x)的极小值:f(-1)=0,
极大值为:f(-3)=-27+54-27+4=4.

点评 本题考查导数在求函数极值中的应用,利用导数求函数的单调区间,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图,在正方体ABCD-A1B1C1D1中,E、F分别为A1B1C1D1,CDD1C1的中心,试用向量$\overrightarrow{{B}_{1}B}$,$\overrightarrow{{B}_{1}{C}_{1}}$,$\overrightarrow{{B}_{1}{A}_{1}}$表示向量:
(1)$\overrightarrow{{B}_{1}C}$;
(2)$\overrightarrow{{B}_{1}D}$;
(3)$\overrightarrow{AE}$;
(4)$\overrightarrow{AF}$;
(5)$\overrightarrow{EF}$;
(6)判断向量$\overrightarrow{EF}$与$\overrightarrow{{B}_{1}C}$是否为共线向量?为什么?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$(a>b>0),直线y=x+$\sqrt{6}$与以原点为圆心,以椭圆C的短半轴为半径的圆相切,F1,F2为其左右焦点,P为椭圆C上的任意一点,△F1PF2的重心为G,内心为I,且IG∥F1F2,则椭圆C的标准方程为$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知轴截面是等腰直角三角形的圆锥,若其母线长为2,则此圆锥侧面积为2$\sqrt{2}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,AB=2$\sqrt{3}$,BC=3,∠ABC=30°,则AC=(  )
A.$\sqrt{3}$B.2$\sqrt{3}$C.$\sqrt{21-6\sqrt{3}}$D.3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.如图,已知B、C是二面角α-l-β棱上两点AB?α,AB⊥l,CD?β,CD⊥l,AB=BC=1,CD=$\sqrt{3}$,AD=2$\sqrt{2}$,则二面角α-l-β的大小是150°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“tana=2”是“tan2a=-$\frac{4}{3}$”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.计算:
(1)($\frac{25}{9}$)${\;}^{\frac{1}{2}}$+30-($\frac{3}{4}$)-1
(2)lg$\sqrt{25}$+lg2-lg10.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知$\vec a=(sinπx,1),\vec b=(\sqrt{3},cosπx)$,$f(x)=\vec a•\vec b$
(I)若x∈[0,2],求$f(x)=\vec a•\vec b$的单调递增区间;
(Ⅱ)设y=f(x)的图象在y轴右侧的第一个最高点的坐标为P,第一个最低点的坐标为Q,坐标原点为O,求∠POQ的余弦值.

查看答案和解析>>

同步练习册答案