精英家教网 > 高中数学 > 题目详情

【题目】设x>0,集合 ,若M∩N={1},则M∪N=(
A.{0,1,2,4}
B.{0,1,2}
C.{1,4}
D.{0,1,4}

【答案】B
【解析】解:∵设x>0,集合 ,M∩N={1},

∴1∈M,且1∈N,

当x2=1时,x=1或x=﹣1(舍),

此时M={1,0},N={2,1},M∩N={1},成立,

M∪N={0,1,2};

当log4x=1时,x=4,

此时M={16,1},N={16,1},M∩N={1,16},不成立.

综上:M∪N={0,1,2}.

故选:B.

【考点精析】通过灵活运用集合的并集运算和集合的交集运算,掌握并集的性质:(1)AA∪B,BA∪B,A∪A=A,A∪=A,A∪B=B∪A;(2)若A∪B=B,则AB,反之也成立;交集的性质:(1)A∩BA,A∩BB,A∩A=A,A∩=,A∩B=B∩A;(2)若A∩B=A,则AB,反之也成立即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知m≠0,向量 =(m,3m),向量 =(m+1,6),集合A={x|(x﹣m2)(x+m﹣2)=0}.
(1)判断“ ”是“| |= ”的什么条件
(2)设命题p:若 ,则m=﹣19,命题q:若集合A的子集个数为2,则m=1,判断p∨q,p∧q,¬q的真假,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=log2(|x+1|+|x﹣2|﹣m).
(1)当m=7时,求函数f(x)的定义域;
(2)若关于x的不等式f(x)≥2的解集是R,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】现采取随机模拟的方法估计某运动员射击击中目标的概率.先由计算器给出0到9之间取整数的随机数,指定0,1,2,3表示没有击中目标,4,5,6,7,8,9表示集中目标,以4个随机数为一组,代表射击4次的结果,经随机模拟产生了20组如下的随机数: 7527 0293 7140 9857 0347 4373 8636 6947 1417 4698
0371 6233 2616 8045 6011 3661 9597 7424 7610 4281
根据以上数据估计该运动员射击四次至少击中三次的概率为:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线C1的参数方程为 (φ为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=4sinθ
(Ⅰ)求曲线C1的普通方程和C2的直角坐标方程;
(Ⅱ)已知曲线C3的极坐标方程为θ=α,0<α<π,ρ∈R,点A是曲线C3与C1的交点,点B是曲线C3与C2的交点,且A,B均异于原点O,且|AB|=4 ,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某学校有甲、乙两个实验班,为了了解班级成绩,采用分层抽样的方法从甲、乙两个班学生中分别抽取8名和6名测试他们的数学成绩与英语成绩(单位:分),用表示(m,n).下面是乙班6名学生的测试分数:A(138,130),B(140,132),C(140,130),D(134,140),E(142,134),F(134,132),当学生的数学、英语成绩满足m≥135,且n≥130时,该学生定为优秀学生.
(1)已知甲班共有80名学生,用上述样本数据估计乙班优秀生的数量;
(2)从乙班抽出的上述6名学生中随机抽取3名,求至少有两名优秀生的概率;
(3)从乙班抽出的上述6名学生中随机抽取2名,其中优秀生数记为ξ,求ξ的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线与坐标轴的交点都在圆上.

(1)求圆的方程;

(2)若圆与直线交于两点,且,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C1与双曲线C2有相同的左右焦点F1、F2 , P为椭圆C1与双曲线C2在第一象限内的一个公共点,设椭圆C1与双曲线C2的离心率为e1 , e2 , 且 = ,若∠F1PF2= ,则双曲线C2的渐近线方程为(
A.x±y=0
B.x± y=0
C.x± y=0
D.x±2y=0

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线y2=2x和圆x2+y2﹣x=0,倾斜角为 的直线l经过抛物线的焦点,若直线l与抛物线和圆的交点自上而下依次为A,B,C,D,则|AB|+|CD|=

查看答案和解析>>

同步练习册答案