精英家教网 > 高中数学 > 题目详情
16、已知函数y=f(x)是R上的偶函数,对于x∈R都有f(x+6)=f(x)+f(3)成立,给出下列命题:
①f(3)=0;
②f(-3)=0;
③直线x=6是函数y=f(x)的图象的一条对称轴;
④函数y=f(x)在[-9,-6]上为增函数.
其中所有正确命题的序号为
①②③
.(把所有正确命题的序号都填上)
分析:对于条件:“x∈R都有f(x+6)=f(x)+f(3)成立”,欲求f(3),故令x=-3,即有f(3)=f(-3)+f(3),f(-3)=0,
再依据函数y=f(x)是R上的偶函数,有f(-3)=f(3),得f(3)=0;欲证“直线x=6是函数y=f(x)的图象的一条对称轴”,即证f(6+x)=f(6-x);由于f(-3)=f(3)=0,得函数y=f(x)在[-9,-6]上不为增函数.
解答:解:对于①②,由条件:“x∈R都有f(x+6)=f(x)+f(3)成立”,令x=-3,
即有f(3)=f(-3)+f(3),再依据函数y=f(x)是R上的偶函数,有f(-3)=f(3),得f(3)=0;
故①②对;
对于③,∵f(x+6)=f(x)+f(3),
又∵f(-x+6)=f(-x)+f(3),且f(-x)=f(x)
∴f(6+x)=f(6-x);∴直线x=6是函数y=f(x)的图象的一条对称轴,故②对;
对于④,由于f(-3)=f(3)=0,得函数y=f(x)在[-9,-6]上不为增函数;故它是错.
故填①②③.
点评:抽象函数是相对于给出具体解析式的函数来说的,它虽然没有具体的表达式,但是有一定的对应法则,满足一定的性质,这种对应法则及函数的相应的性质是解决问题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

16、已知函数y=f(x)是R上的奇函数且在[0,+∞)上是增函数,若f(a+2)+f(a)>0,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

2、已知函数y=f(x+1)的图象过点(3,2),则函数f(x)的图象关于x轴的对称图形一定过点(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是偶函数,当x<0时,f(x)=x(1-x),那么当x>0时,f(x)=
-x(1+x)
-x(1+x)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)是定义在R上的奇函数,当x>0 时,f(x)的图象如图所示,则不等式x[f(x)-f(-x)]≤0 的解集为
[-3,3]
[-3,3]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)的图象如图,则满足f(log2(x-1))•f(2-x2-1)≥0的x的取值范围为
(1,3]
(1,3]

查看答案和解析>>

同步练习册答案