精英家教网 > 高中数学 > 题目详情
因为|
b
2a
|>
1
2
,所以-
b
2a
的取值范围为:
 
考点:不等式的基本性质
专题:不等式的解法及应用
分析:由于|
b
2a
|>
1
2
,可得-
b
2a
1
2
-
b
2a
<-
1
2
解答: 解:∵|
b
2a
|>
1
2

∴-
b
2a
1
2
-
b
2a
<-
1
2

-
b
2a
的取值范围是(-∞,-
1
2
)
∪(
1
2
,+∞)

故答案为:(-∞,-
1
2
)
∪(
1
2
,+∞)
点评:本题考查了绝对值不等式的性质,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在△ABC中,三边a、b、c所对的角分别为A、B、C,a=
2
,b=3,C=45°
,则
AC
CB
=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知二次函数f(x)=2kx2-2x-3k-2,x∈[-5,5],求实数k的取值范围,使y=f(x)在区间[-5,5]上是单调函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知集合A={x|x=a2+1,a∈N+且x≤10},B={y|y=a2-2a+2,a∈N+且y≤10},求A∩B,A∪B.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(
π
2
+x)cos(
π
2
-x)+cosxcos(π-x)
(1)求函数f(x)的最小正周期;
(2)当x∈[-
π
4
π
4
]时,求函数f(x)的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C的中心在坐标原点,它的一个焦点坐标为(
2
,0),它的长轴是短轴的
3
倍,直线y=m(m为常数)与椭圆交于A,B两点,以线段AB为直径作圆P,圆心为P.
(1)求椭圆C的方程;
(2)若圆P与x轴相切,求圆心P的坐标;
(3)设M(x,y)是圆P上的动点,当m变化时,求y的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知定义在R上的函数f(x),g(x)满足
f(x)
g(x)
=ax
,且f′(x)g(x)>f(x)g′(x),
f(1)
g(1)
+
f(-1)
g(-1)
=
5
2
.若有穷数列{
f(n)
g(n)
}
的前n项和为Sn,则满足不等式Sn>2015的最小正整数n等于(  )
A、7B、8C、9D、10

查看答案和解析>>

科目:高中数学 来源: 题型:

(理)如图,在正方体ABCD-A1B1C1D1中,点O为线段BD的中点.设点P在线段CC1上,直线OP与平面A1BD所成的角为α,则sinα的取值范围是(  )
A、[
3
3
,1]
B、[
6
3
,1]
C、[
6
3
2
2
3
]
D、[
2
2
3
,1]

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈(-1,1]时,f(x)=|x|,则y=f(x)与y=log7x的交点的个数为(  )
A、4B、5C、6D、7

查看答案和解析>>

同步练习册答案