精英家教网 > 高中数学 > 题目详情
如图,A,B,C,D为空间四点,△ABC是等腰三角形,且∠ACB=90°,△ADB是等边三角形.则AB与CD所成角的大小为______.
连接AB的重点E点和D点,连接CE,
因为△ADB是等边三角形,则DE⊥AB,△ABC是等腰三角形,且∠ACB=90°,则CE⊥AB,
由于DE和CE在同一平面,因此可得AB⊥平面DCE,
因此可得AB⊥CD,
故AB与CD所成角的大小为 90°.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:单选题

若直线m与平面α所成角为
π
3
,直线n?α,则直线m,n所成角的取值范围是(  )
A.(0,
π
2
)
B.[
π
6
π
2
]
C.[
π
3
π
2
]
D.[
π
6
π
3
]

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

如图,平面AC⊥平面AE,且四边形ABCD与四边形ABEF都是正方形,则异面直线AC与BF所成角的大小是______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知a、b为异面直线,点A、B在直线a上,点C、D在直线b上,且AC=AD,BC=BD,则直线a、b所成的角为(  )
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

异面直线a,b所成的角为60°,过空间点P作线c与它们都成60°,则线c的条数为______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在正方体ABCD-A1B1C1D1中,M、N分别为棱A1B1和BB1的中点,那么异面直线AM和CN所成角的余弦值是(  )
A.
3
2
B.
10
2
C.
2
5
D.-
2
5

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=2.
(1)求证:SA⊥CD;
(2)求异面直线SB与CD所成角的大小.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

设OA是球O的半径,M是OA的中点,过M且与OA成450角的平面截球O的表面得到圆C,若圆C的面积等于
8
,则球O的半径等于______.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

如图,三棱锥P-ABC中,∠ACB=90°,PA⊥底面ABC.
(I)求证:平面PAC⊥平面PBC;
(II)若AC=BC=PA,M是PB的中点,求AM与平面PBC所成角的正切值.

查看答案和解析>>

同步练习册答案