【题目】已知直线过椭圆的右焦点,且交椭圆于A,B两点,线段AB的中点是,
(1)求椭圆的方程;
(2)过原点的直线l与线段AB相交(不含端点)且交椭圆于C,D两点,求四边形面积的最大值.
【答案】(1)(2)
【解析】
(1)由直线可得椭圆右焦点的坐标为,由中点可得,且由斜率公式可得,由点在椭圆上,则,二者作差,进而代入整理可得,即可求解;
(2)设直线,点到直线的距离为,则四边形的面积为,将代入椭圆方程,再利用弦长公式求得,利用点到直线距离求得,根据直线l与线段AB(不含端点)相交,可得,即,进而整理换元,由二次函数性质求解最值即可.
(1)直线与x轴交于点,所以椭圆右焦点的坐标为,故,
因为线段AB的中点是,
设,则,且,
又,作差可得,
则,得
又,
所以,
因此椭圆的方程为.
(2)由(1)联立,解得或,
不妨令,易知直线l的斜率存在,
设直线,代入,得,
解得或,
设,则,
则,
因为到直线的距离分别是,
由于直线l与线段AB(不含端点)相交,所以,即,
所以,
四边形的面积,
令,,则,
所以,
当,即时,,
因此四边形面积的最大值为.
科目:高中数学 来源: 题型:
【题目】某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值,若某住户某月用电量不超过度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过度,则超出部分按议价(单位:元/度)计费,未超出部分按平价计费.为确定的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表).
(1)若该市计划让全市70%的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值;
(2)在(1)的条件下,假定出台“阶梯电价”之后,月用电量未达度的住户用电量保持不变;月用电量超过度的住户节省“超出部分”的60%,试估计全市每月节约的电量.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某同学理科成绩优异,今年参加了数学,物理,化学,生物4门学科竞赛.已知该同学数学获一等奖的概率为,物理,化学,生物获一等奖的概率都是,且四门学科是否获一等奖相互独立.
(1)求该同学至多有一门学科获得一等奖的概率;
(2)用随机变量表示该同学获得一等奖的总数,求的概率分布和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】刘徽(约公元225年-295年),魏晋期间伟大的数学家,中国古典数学理论的奠基人之一他在割圆术中提出的,“割之弥细,所失弥少,割之又割,以至于不可割,则与圆周合体而无所失矣”,这可视为中国古代极限观念的佳作,割圆术的核心思想是将一个圆的内接正n边形等分成n个等腰三角形(如图所示),当n变得很大时,这n个等腰三角形的面积之和近似等于圆的面积,运用割圆术的思想,得到的近似值为( )
A.B.C.D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:的四个顶点围成的四边形的面积为,原点到直线的距离为.
(1)求椭圆的方程;
(2)已知定点,是否存在过的直线,使与椭圆交于,两点,且以为直径的圆过椭圆的左顶点?若存在,求出的方程:若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线的焦点为,点是抛物线上任意一点,以为直径作圆.
(1)判断圆与坐标轴的位置关系,并证明你的结论;
(2)设直线与抛物线交于,,且,若的面积为,求直线的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥中,为正三角形,四边形ABCD为直角梯形,//,平面平面ABCD,点E,F分别为AD,CP的中点,.
(1)证明:直线//平面PAB;
(2)求直线EF与平面PBC所成角的正弦值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系中,倾斜角为的直线的参数方程为(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)若,求直线的极坐标方程;
(2)若直线的斜率为,直线与曲线相交于两点,点,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com