精英家教网 > 高中数学 > 题目详情
在一个交通拥挤及事故易发生路段,为了确保交通安全,交通部门规定,在此路段内的车速v(单位:km/h)的平方和车身长(单位:m)的乘积与车距d成正比,且最小车距不得少于半个车身长.假定车身长均为(单位:m)且当车速为50(km/h)时,车距恰为车身长,问交通繁忙时,应规定怎样的车速,才能使在此路段的车流量Q最大?(车流量=)

【错解分析】,将代入得
,又将代入得
由题意得)将Q==

∴当且仅当时,
综上所知,km/h)时,车流量Q取得最大值.
【正解】(1)依题意,

显然当时,Q是关于的增函数,
∴当时,
时,Q==
当且仅当时,上式等号成立.
综上所述,当且仅当时,车流量Q取得最大值.
【点评】在行驶过程中车速有可能低于25km/h),所以解题材中应分两类情形求解,得分段函数.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

(本小题共13分)设k∈R,函数   ,,x∈R.试讨论函数F(x)的单调性.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(12分)已知函数,曲线过点P(-1,2),且在点P处的切线恰好与直线x-3y=0垂直。
①求a,b的值;
②求该函数的单调区间和极值。
③若函数在上是增函数,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知f(x)=x-(a>0),g(x)=2lnx+bx且直线y=2x-2与曲线y=g(x)相切.
(1)若对[1,+)内的一切实数x,小等式f(x)≥g(x)恒成立,求实数a的取值范围;
(2)当a=l时,求最大的正整数k,使得对[e,3](e=2.71828是自然对数的底数)内的任意k个实数x1,x2,,xk都有成立;
(3)求证:

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

曲线的一条切线垂直于直线, 则切点P0的坐标为:
A.B.
C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

(本小题满分12分)函数
(Ⅰ)求的单调区间和最小值;
(Ⅱ)讨论的大小关系;
(Ⅲ)是否存在,使得对任意成立?若存在,求出的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知,则       

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

函数的极大值为(    )
A.4B.3C.-3D.-4

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,其中常数 .
(1)当时,求函数的极大值;
(2)试讨论在区间上的单调性;
(3)当时,曲线上总存在相异两点,
,使得曲线在点处的切线互相平行,求的取值范围.

查看答案和解析>>

同步练习册答案