精英家教网 > 高中数学 > 题目详情

【题目】已知函数,令.

(Ⅰ)研究函数的单调性;

(Ⅱ)若关于的不等式恒成立,求整数的最小值;

(Ⅲ),正实数满足,证明:.

【答案】(1) 的单增区间为.

(2)2.

(3)见解析.

【解析】分析:(1)先求函数的定义域,然后求导,通过导数大于0得到增区间;

(2)不等式恒成立问题转化为函数的最值问题,应先求导数,研究函数的单调性,然后求函数的最值;

(3)联系函数的单调性,然后证明即可,注意对函数的构造.

详解:(1)

,得,又,所以,所以的单增区间为.

(2)方法一:令

所以.

时,因为,所以.所以上是递增函数,

又因为

所以关于的不等式不能恒成立.当时,

.

,得,所以当时,;当时,.

因此函数是增函数,在是减函数.

故函数的最大值为.令,因为,又因为上是减函数,所以当时,.所以整数的最小值为.

方法二:(2)由恒成立,得上恒成立.

问题等价于上恒成立.令,只要.因为

,令,得.设,因为,所以上单调递减,不妨设的根为.当时,;当时,.所以上是增函数;在上是减函数.

所以.因为

所以.此时.所以,即整数的最小值为.

(3)当时,,即

从而

,则由得,可知在区间上单调递减,在区间上单调递增.所以,所以,即成立.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在育民中学举行的电脑知识竞赛中,将九年级两个班参赛的学生成绩(得分均为整数)进行整理后分成五组,绘制如图所示的频率分布直方图.已知图中从左到右的第一、第三、第四、第五小组的频率分别是0.30,0.15,0.10,0.05,第二小组的频数是40.

(1)求第二小组的频率,并补全这个频率分布直方图;

(2)求这两个班参赛的学生人数是多少?

(3)求这两个班参赛学生的成绩的中位数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)当时,函数恰有两个不同的零点,求实数的值;

2)当时,

若对于任意,恒有,求的取值范围;

,求函数在区间上的最大值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知α∈( ,π),sinα=
(1)求sin( +α)的值;
(2)求cos( ﹣2α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知椭圆 的离心率,且椭圆上一点到点的距离的最大值为.

(Ⅰ)求椭圆的方程;

(Ⅱ)设 为抛物线 上一动点,过点作抛物线的切线交椭圆两点,求面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f (x)=exg(x)=xbb∈R.

(1)若函数f (x)的图象与函数g(x)的图象相切,求b的值;

(2)设T(x)=f (x)+ag(x),a∈R,求函数T(x)的单调增区间;

(3)h(x)=|g(x)|·f (x),b1.若存在x1x2 [0,1],使|h(x1)-h(x2)|1成立,求b的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给定椭圆C(ab0),称圆C1x2y2a2b2为椭圆C伴随圆.已知椭圆C的离心率为,且经过点(01)

1)求实数ab的值;

2)若过点P(0m)(m0)的直线l与椭圆C有且只有一个公共点,且l被椭圆C的伴随圆C1所截得的弦长为2,求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】交通指数是指交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念性指数值,记交通指数为,其范围为,分别有五个级别:,畅通;,基本畅通;,轻度拥堵;,中度拥堵;,严重拥堵.在晚高峰时段(),从某市交通指挥中心选取了市区20个交通路段,依据其交通指数数据绘制的频率分布直方图如图所示.

(1)求出轻度拥堵、中度拥堵、严重拥堵的路段的个数;

(2)用分层抽样的方法从轻度拥堵、中度拥堵、严重拥堵的路段中共抽取6个路段,求依次抽取的三个级别路段的个数;

(3)从(2)中抽取的6个路段中任取2个,求至少有1个路段为轻度拥堵的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校计划在全国中学生田径比赛期间,安排6位志愿者到4个比赛场地提供服务,要求甲、乙两个比赛场地各安排一个人,剩下两个比赛场地各安排两个人,其中的小李和小王不在一起,不同的安排方案共有( )

A. 168种 B. 156种 C. 172种 D. 180种

查看答案和解析>>

同步练习册答案