精英家教网 > 高中数学 > 题目详情

【题目】已知点为圆的圆心, 是圆上动点,点在圆的半径上,且有点上的点,满足

(1)当在圆上运动时,求点的轨迹方程;

(2)若斜率为的直线与圆相切,与(1)中所求点的轨迹教育不同的两点 是坐标原点,且时,求的取值范围.

【答案】12

【解析】试题分析:(1中线段的垂直平分线,所以所以点的轨迹是以点为焦点,焦距为2,长轴为的椭圆从而可得椭圆方程;(2设直线,直线与圆相切,可得直线方程与椭圆方程联立可得: ,可得再利用数量积运算性质、根与系数的关系及其即可解出的范围.

试题解析:(1)由题意知中线段的垂直平分线,所以

所以点的轨迹是以点为焦点,焦距为2,长轴为的椭圆,

故点的轨迹方程式

2)设直线

直线与圆相切

联立

所以为所求.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】省环保研究所对某市市中心每天环境放射性污染情况进行调查研究后,发现一天中环境综合放射性污染指数与时刻 (时)的关系为,其中是与气象有关的参数,且,若用每天的最大值为当天的综合放射性污染指数,并记作.

(1)令.求的取值范围;

(2)求;

(3)省政府规定,每天的综合放射性污染指数不得超过2,试问目前该市市中心的综合放射性污染指数是否超标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,椭圆C: =1(a>b>0)的离心率为 ,以原点为圆心,椭圆C的短半轴长为半径的圆与直线x﹣y+2=0相切.

(1)求椭圆C的方程;
(2)已知点P(0,1),Q(0,2).设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某保险公司有一款保险产品的历史收益率(收益率=利润÷保费收入)的频率分布直方图如图所示:

(Ⅰ)试估计平均收益率;

(Ⅱ)根据经验,若每份保单的保费在20元的基础上每增加元,对应的销量(万份)与(元)有较强线性相关关系,从历史销售记录中抽样得到如下5组的对应数据:

据此计算出的回归方程为.

(i)求参数的估计值;

(ii)若把回归方程当作的线性关系,用(Ⅰ)中求出的平均收益率估计此产品的收益率,每份保单的保费定为多少元时此产品可获得最大收益,并求出该最大收益.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数(其中 为常数, 为自然对数的底数).

(1)讨论函数的单调性;

(2)设曲线处的切线为,当时,求直线轴上截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在边长为4的菱形中, ,点分别是的中点, ,沿翻折到,连接,得到如图的五棱锥,且

(1)求证: 平面(2)求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= ,若对任意的a∈(﹣3,+∞),关于x的方程f(x)=kx都有3个不同的根,则k等于(
A.1
B.2
C.3
D.4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知f(x)=xex , g(x)=﹣(x+1)2+a,若x1 , x2∈R,使得f(x2)≤g(x1)成立,则实数a的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,三棱柱中, 平面 分别为的中点, 是边长为2 的正三角形, .

(1)证明: 平面

(2)求二面角的余弦值.

查看答案和解析>>

同步练习册答案