【题目】如图四棱锥中,底面ABCD是平行四边形,平面ABCD,垂足为G,G在AD上,且,,,,E是BC的中点.
求异面直线GE与PC所成的角的余弦值;
求点D到平面PBG的距离;
若F点是棱PC上一点,且,求的值.
科目:高中数学 来源: 题型:
【题目】已知:动点P,Q都在曲线C: (t为参数)上,对应参数分别为t=α与t=2α(0<α<2π),M为PQ的中点.
(1)求M的轨迹的参数方程;
(2)将M到坐标原点的距离d表示为α的函数,并判断M的轨迹是否过坐标原点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知圆M的方程为,直线l的方程为,点P在直线l上,过点P作圆M的切线PA,PB,切点为A,B.
若,试求点P的坐标;
求四边形PAMB面积的最小值及此时点P的坐标;
求证:经过A,P,M三点的圆必过定点,并求出所有定点的坐标.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆的离心率为,过右焦点作垂直于椭圆长轴的直线交椭圆于两点,且为坐标原点.
(1)求椭圆的方程;
(2) 设直线与椭圆相交于两点,若.
①求的值;
②求的面积的最小值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】盒子里装有大小质量完全相同且分别标有数字1、2、3、4的四个小球,从盒子里随机摸出两个小球,那么事件“摸出的小球上标有的数字之和大于数字之积”的概率是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com