精英家教网 > 高中数学 > 题目详情
某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨、B原料2吨;生产每吨,乙产品要用A原料1吨、B原料3吨.销售每吨甲产品可获得利润1万元,每吨乙产品可获得利润3万元,该企业在某个生产周期内甲产品至少生产1吨,乙产品至少生产2吨,消耗A原料不超过1 3吨,消耗B原料不超过1 8吨,那么该企业在这个生产周期内获得最大利润时甲产品的产量应是(  )
分析:先设该企业生产甲产品为x吨,乙产品为y吨,列出约束条件,再根据约束条件画出可行域,设z=x+3y,再利用z的几何意义求最值,只需求出直线z=x+3y过可行域内的点时,从而得到z值即可.
解答:解:设生产甲产品x吨,生产乙产品y吨,
则有:
x≥1
y≥2
3x+y≤13
2x+3y≤18

目标函数z=x+3y,
如图作出可行域

解方程组
x=1
y=2
,得A(1,2),∴zA=1+2×3=7;
解方程组
3x+y=13
y=2
,得B(
11
3
,2),∴zB=
11
3
+2×3=
29
3

解方程组
3x+y=13
2x+3y=18
,得C(
21
7
28
7
),∴zC=
21
7
+
28
7
×3
=15,
解方程组
x=1
2x+3y=18
,得D(1,
16
3
),∴zD=1+
16
3
×3
=17.
∴该企业在这个生产周期内获得最大利润时甲产品的产量应是x=1(吨).
故选A.
点评:在解决线性规划的应用题时,其步骤为:①分析题目中相关量的关系,列出不等式组,即约束条件⇒②由约束条件画出可行域⇒③分析目标函数Z与直线截距之间的关系⇒④使用平移直线法求出最优解⇒⑤还原到现实问题中.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料4吨、B原料2吨;生产每吨乙产品要用A原料2吨、B原料3吨.销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,该企业在一个生产周期内消耗A原料不超过20吨、B原料不超过18吨,求该企业在一个生产周期内可获得的最大利润.

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业生产甲、乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润5万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.那么该企业可获得最大利润是
27万元
27万元

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业生产甲.乙两种产品,已知生产每吨甲产品要用A原料3吨,B原料2吨;生产每吨乙产品要用A原料1吨,B原料3吨,销售每吨甲产品可获得利润6万元,每吨乙产品可获得利润3万元.该企业在一个生产周期内消耗A原料不超过13吨,B原料不超过18吨.求甲乙两种产品各生产多少吨时,该企业可获得最大利润,并求出最大利润?

查看答案和解析>>

科目:高中数学 来源: 题型:

某企业生产甲、乙两种产品,根据市场调查与预测,甲产品的利润与投资成正比,其关系如图1,乙产品的利润与投资的算术平方根成正比,其关系如图2(注:利润与投资的单位:万元).

(Ⅰ)分别将甲、乙两种产品的利润表示为投资的函数关系式;
(Ⅱ)该企业筹集了100万元资金投入生产甲、乙两种产品,问:怎样分配这100万元资金,才能使企业获得最大利润,其最大利润为多少万元?

查看答案和解析>>

同步练习册答案