精英家教网 > 高中数学 > 题目详情

【题目】在四棱锥中, 为正三角形,平面平面 .

(Ⅰ)求证:平面平面

(Ⅱ)求三棱锥的体积;

(Ⅲ)在棱上是否存在点,使得平面?若存在,请确定点的位置并证明;若不存在,说明理由.

【答案】(1)证明见解析;(2);(3)存在,证明见解析.

【解析】试题分析:(Ⅰ)先证明,再根据面面垂直的性质定理可得平面,再利用面面垂直的判定定理可得结论;(Ⅱ)先根据面面垂直的性质定理可得平面,再根据棱锥的体积公式可得结果;(Ⅲ) 的中点时, 平面,根先证明平面平面,从而可得结果.

试题解析:(Ⅰ)因为

所以.

因为平面平面,平面平面

所以平面.

因为平面,

所以平面平面.

(Ⅱ)取的中点,连结.

因为为正三角形,

所以.

因为平面平面

平面平面

所以平面

所以为三棱锥的高.

因为为正三角形,

所以.

所以 .

(Ⅲ)在棱上存在点,当的中点时, 平面.

分别取的中点,连结.

所以. 因为

所以.

所以四边形为平行四边形.

所以.

因为,

所以平面平面.

因为平面

所以平面.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】函数f(x)=|2x﹣1|,定义f1(x)=x,fn+1(x)=f(fn(x)),已知函数g(x)=fm(x)﹣x有8个零点,则m的值为(
A.8
B.4
C.3
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2﹣2lnx,h(x)=x2﹣x+a.
(1)其求函数f(x)的极值;
(2)设函数k(x)=f(x)﹣h(x),若函数k(x)在[1,3]上恰有两个不同零点求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=x2+(1﹣k)x﹣k恰有一个零点在区间(2,3)内,则实数k的取值范围是

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知: =(2sinx,2cosx), =(cosx,﹣cosx),f(x)=
(1)若 共线,且x∈( ,π),求x的值;
(2)求函数f(x)的周期;
(3)若对任意x∈[0, ]不等式m﹣2≤f(x)≤m+ 恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】命题p: =1表示双曲线方程,命题q:函数f(m)= 有意义.若p∨q为真,p∧q为假,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】随着我市九龙江南岸江滨路建设的持续推进,未来市民将新增又一休闲好去处,据悉南江滨路建设工程规划配套建造一个长方形公园ABCD,如图所示,公园由长方形的休闲区A1B1C1D1(阴影部分)和环公园人行道组成,已知休闲区A1B1C1D1的面积为4000m2 , 人行道的宽度分别为4m和10m.

(1)若休闲区的长A1B1=x m,求公园ABCD所占面积S关于x的函数S(x)的解析式;
(2)要使公园所占面积最小,休闲区A1B1C1D1的长和宽该如何设计?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某职称晋级评定机构对参加某次专业技术考试的100人的成绩进行了统计,绘制了频率分布直方图(如图所示),规定80分及以上者晋级成功,否则晋级失败(满分为100分).

(1)求图中的值;

(2)估计该次考试的平均分(同一组中的数据用该组的区间中点值代表);

(3)根据已知条件完成下面列联表,并判断能否有85%的把握认为“晋级成功”与性别有关?

(参考公式: ,其中

0.40

0.25

0.15

0.10

0.05

0.025

0.780

1.323

2.072

2.706

3.841

5.024

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线 (t为参数).以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,曲线C的坐标方程为
(1)将曲线C的极坐标方程化为直坐标方程;
(2)设点M的直角坐标为 ,直线l与曲线C的交点为A,B,求|MA||MB|的值.

查看答案和解析>>

同步练习册答案