精英家教网 > 高中数学 > 题目详情
已知函数是实数常数)的图像上的一个最高点,与该最高点最近的一个最低点是
(1)求函数的解析式及其单调增区间;
(2)在锐角三角形△ABC中,角A、B、C所对的边分别为,且,角A的取值范围是区间M,当时,试求函数的取值范围.
(1),单调递增区间是;(2).

试题分析:
(1)本题考查五点法作函数的图象,最高点到最低点之间横坐标之差为半个周期,函数式可先化简为,再根据其性质,可列出关于的方程,得出结论;(2)利用向量数量积的定义,可求得,这时要注意向量的夹角是,不是,再利用锐角三角形的定义可求出的取值范围,即,此时只要求得的范围,就可借助于正弦函数的性质求得的取值范围.
(1)∵
.
分别是函数图像上相邻的最高点和最低点,
解得
.
,解得.     
∴函数的单调递增区间是.
(2)∵在中,
.
,即.
.
时,,考察正弦函数的图像,可知,.
,即函数的取值范围是.的图象;(2)数量积,三角函数的值域.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

电流强度I与时间t的关系式 。(1)在一个周期内如图所示,试根据图象写出的解析式;(2)为了使中t在任意一段秒的时内I能同时取最大值|A|和最小值-|A|,那么正整数的最小值为多少?

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

设函数f(x)=sin(2x+),则下列结论正确的是(  )
A.f(x)的图象关于直线x=对称
B.f(x)的图象关于点(,0)对称
C.f(x)的最小正周期为π,且在[0,]上为增函数
D.把f(x)的图象向右平移个单位,得到一个偶函数的图象

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

函数y= -8cosx的单调递减区间为         .

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

(2013•湖北)将函数的图象向左平移m(m>0)个单位长度后,所得到的图象关于y轴对称,则m的最小值是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

福建高考将函数f(x)=sin(2x+θ)的图象向右平移φ(φ>0)个单位长度后得到函数g(x)的图象,若f(x),g(x)的图象都经过点P,则φ的值可以是(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知函数是定义在上的偶函数,且在区间上是增函数.令,则(   )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数f (x)=cos(2x+)+sin2x+2a
(1)求函数f (x)的单调递增区间
(2)当0≤x≤时,f (x)的最小值为0,求a的值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

已知函数,则函数的最小值为         .

查看答案和解析>>

同步练习册答案