精英家教网 > 高中数学 > 题目详情

【题目】已知三棱锥中,为等腰直角三角形,,设点中点,点中点,点上一点,且

(1)证明:平面

(2)若,求直线与平面所成角的正弦值.

【答案】(1)证明见解析;(2)

【解析】

1)连接点,连接,通过证,并说明平面,来证明平面

2)采用建系法以所在直线分别为轴建立空间直角坐标系,分别表示出对应的点坐标,设平面的一个法向量为,结合直线对应的和法向量,利用向量夹角的余弦公式进行求解即可

证明:如图,

连接点,连接的中点,点的中点,

的重心,则

平面平面平面

,可得,又

则以所在直线分别为轴建立空间直角坐标系

设平面的一个法向量为,由

,得.设直线与平面所成角为

直线与平面所成角的正弦值为

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某地区不同身高的未成年男孩的体重平均值如下表:

身高

60

70

80

90

100

体重

6.13

7.90

9.99

12.15

15.02

已知之间存在很强的线性相关性,

(1)据此建立之间的回归方程;

(2)若体重超过相同身高男性体重平均值的1.2倍为偏胖,低于0.8倍为偏瘦,那么这个地区一名身高体重为的在校男生的体重是否正常?

参考数据:

附:对于一组数据,其回归直线中的斜率和截距的最小二乘估计分别为.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知,函数,且曲线处的切线与直线垂直.

(I)求函数在区间上的极大值;

(II)求证:当时,

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的右焦点为,离心率为是椭圆上位于第一象限内的任意一点,为坐标原点,关于的对称点为,圆.

1)求椭圆和圆的标准方程;

2)过点与圆相切于点,使得点,点的两侧.求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中:

①若样本数据的方差为16,则数据的方差为64

②“平面向量夹角为锐角,则”的逆命题为真命题;

③命题“”的否定是“”;

④若:,则的充分不必要条件.

真命题的个数序号_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】十九大提出,坚决打赢脱贫攻坚战,某帮扶单位为帮助定点扶贫村真脱贫,坚持扶贫同扶智相结合,帮助贫困村种植蜜柚,并利用电商进行销售,为了更好地销售,现从该村的蜜柚树上随机摘下了个蜜柚进行测重,其质量分别在,,(单位:克)中,其频率分布直方图如图所示,

(Ⅰ)已经按分层抽样的方法从质量落在的蜜柚中抽取了个,现从这个蜜柚中随机抽取个。求这个蜜柚质量均小于克的概率:

(Ⅱ)以各组数据的中间值代表这组数据的平均水平,以频率代表概率,已知该贫困村的蜜柚树上大约还有个蜜柚等待出售,某电商提出了两种收购方案:

方案一:所有蜜柚均以元/千克收购;

方案二:低于克的蜜柚以元/个收购,高于或等于克的以元/个收购.

请你通过计算为该村选择收益最好的方案.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在底面为菱形的四棱锥P-ABCD中,平面平面ABCD为等腰直角三角形,,点EF分别为BCPD的中点,直线PC与平面AEF交于点Q.

(1)若平面平面,求证:.

(2)求直线AQ与平面PCD所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,底面为平行四边形,平面平面是边长为4的等边三角形,的中点.

(1)求证:

(2)若直线与平面所成角的正弦值为,求平面 与平面所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在单位正方体中,点在线段上运动,给出以下三个命题:

①三棱锥的体积为定值; ②二面角的大小为定值;

③异面直线与直线所成的角为定值;

其中真命题有(

A.0B.1C.2D.3

查看答案和解析>>

同步练习册答案