精英家教网 > 高中数学 > 题目详情

【题目】已知过点的直线与圆相交于AB两点.

1)若,求直线AB的方程;

2)设线段AB的中点为M,求点M的轨迹方程.

【答案】1

2

【解析】

由圆的方程可得圆心坐标和半径;

1)当直线斜率不存在时可知不满足题意,由此可设方程为,利用垂径定理可构造方程求得,进而得到直线方程;

2)由圆的性质可知,利用平面向量坐标运算可表示出所满足的方程,通过在圆内可确定的取值范围,进而得到结果.

将圆方程整理为:,则圆心,半径

1)若过点的直线斜率不存在,则方程为,此时直线与圆无交点,不合题意,

过点的直线斜率存在,设直线方程为,即

则圆心到直线距离,解得:

直线的方程为:.

2)由圆的性质可知:,即.

,则

,整理可得:

得:

为圆的弦的中点,在圆内,即

的轨迹方程为.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某渔轮在航行中不幸遇险,发出呼救信号,我海军舰艇在A处获悉后,立即测出该渔轮在方位角为45°,距离为10mileC处,并测得渔轮正沿方位角为105°的方向,以mile/h的速度向某小岛靠拢,我海军舰艇立即向方位角为方向,以mile/h的速度前去营救,求舰艇与渔轮相遇时所需的最短时间和

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】判断下列命题的真假:

1)存在两个无理数,它们的乘积是有理数;

2)如果实数集的子集A是有限集,则A中的元素一定有最大值;

3)没有一个无理数不是实数;

4)如果一个四边形的对角线相等,则这个四边形是矩形;

5)集合A是集合的子集;

6)集合是集合A的子集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆C.

1)求经过点且与圆C相切的直线方程;

2)设直线与圆C相交于AB两点,求实数n的值;

3)若点在以为圆心,以1为半径的圆上,距离为4的两点PQ在圆C上,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知直线l经过点.

1)若直线在两坐标轴上的截距相等,求直线的方程;

2)若两点到直线的距离相等,求直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了了解某省各景点在大众中的熟知度,随机对15~65岁的人群抽样了人,回答问题“某省有哪几个著名的旅游景点?”统计结果如下图表

组号

分组

回答正确

的人数

回答正确的人数

占本组的频率

第1组

[15,25)

0.5

第2组

[25,35)

18

第3组

[35,45)

0.9

第4组

[45,55)

9

0.36

第5组

[55,65]

3

(1)分别求出的值;

(2)从第2,3,4组回答正确的人中用分层抽样的方法抽取6人,求第2,3,4组每组各抽取多少人?

(3)在(2)抽取的6人中随机抽取2人,求所抽取的人中恰好没有第3组人的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列,其前项和为,满足 ,其中

.

1 ),求数列的前项和;

2,且求证:数列是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(Ⅰ)若,求曲线在点处的切线方程;

(Ⅱ)若上恒成立,求实数的取值范围;

(Ⅲ)若数列的前项和 ,求证:数列的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市ABCD四所中学报名参加某高校2015年自主招生考试的学生人数如下表所示:

中学

A

B

C

D

人数

40

30

10

20

该市教委为了解参加考试的学生的学习状况,采用分层抽样的方法从四所中学报名参加考试的学生中随机抽取50名参加问卷调查.ABCD四所中学抽取的学生人数分别为(

A.1520105B.1520510

C.2015105D.2015510

查看答案和解析>>

同步练习册答案