【题目】解关于x的不等式
【答案】见解析
【解析】
根据a的范围,分a等于0和a大于0两种情况考虑:当时,把代入不等式得到一个一元一次不等式,求出不等式的解集;当a大于0时,把原不等式的左边分解因式,再根据a大于1,及a大于0小于1分三种情况取解集,当a大于1时,根据小于1,利用不等式取解集的方法求出解集;当时,根据完全平方式大于0,得到x不等于1;当a大于0小于1时,根据大于1,利用不等式取解集的方法即可求出解集,综上,写出a不同取值时,各自的解集即可.
当时,不等式化为,;
当时,原不等式化为,
当时,不等式的解为或;
当时,不等式的解为;
当时,不等式的解为或;
综上所述,得原不等式的解集为:
当时,解集为;当时,解集为或;
当时,解集为;当时,解集为或.
科目:高中数学 来源: 题型:
【题目】从甲、乙两名学生中选拔一人参加射箭比赛,为此需要对他们的射箭水平进行测试.现这两名学生在相同条件下各射箭10次,命中的环数如下:
甲 | 8 | 9 | 7 | 9 | 7 | 6 | 10 | 10 | 8 | 6 |
乙 | 10 | 9 | 8 | 6 | 8 | 7 | 9 | 7 | 8 | 8 |
(1)计算甲、乙两人射箭命中环数的平均数和标准差;
(2)比较两个人的成绩,然后决定选择哪名学生参加射箭比赛.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数的部分图象如图所示,且相邻的两个最值点的距离为.
(1)求函数的解析式;
(2)若将函数的图象向左平移1个单位长度后得到函数的图象,关于的不等式在上有解,求的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合P={x|a+1≤x≤2a+1},Q={x|x2-3x≤10}.
(1)若a=3,求(RP)∩Q;
(2)若P∪Q=Q,求实数a的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某工厂要建造一个长方形无盖蓄水池,其容积为立方米,深为.如果池底每平方米的造价为元,池壁每平方米的造价为元,那么怎样设计水池能使总造价最低(设蓄水池池底的相邻两边边长分别为,)?最低总造价是多少?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2018年2月22日上午,山东省省委、省政府在济南召开山东省全面展开新旧动能转换重大工程动员大会,会议动员各方力量,迅速全面展开新旧动能转换重大工程.某企业响应号召,对现有设备进行改造,为了分析设备改造前后的效果,现从设备改造前后生产的大量产品中各抽取了200件产品作为样本,检测一项质量指标值,若该项质量指标值落在内的产品视为合格品,否则为不合格品.图1是设备改造前的样本的频率分布直方图,表1是设备改造后的样本的频数分布表.
表1:设备改造后样本的频数分布表
质量指标值 | ||||||
频数 | 4 | 36 | 96 | 28 | 32 | 4 |
(1)完成下面的列联表,并判断是否有99%的把握认为该企业生产的这种产品的质量指标值与设备改造有关;
设备改造前 | 设备改造后 | 合计 | |
合格品 | |||
不合格品 | |||
合计 |
(2)根据图1和表1提供的数据,试从产品合格率的角度对改造前后设备的优劣进行比较;
(3)根据市场调查,设备改造后,每生产一件合格品企业可获利180元,一件不合格品亏损 100元,用频率估计概率,则生产1000件产品企业大约能获利多少元?
附:
0.150 | 0.100 | 0.050 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】三角形的面积为,其中,,为三角形的边长,为三角形内切圆的半径,则利用类比推理,可得出四面体的体积为( )
A.
B.
C. ,(为四面体的高)
D. ,(,,,分别为四面体的四个面的面积,为四面体内切球的半径)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com