【题目】《九章算术》是我国古代的数学巨著,内容极为丰富,其中卷六《均输》里有如下问题:“今有五人分五钱,令上二人所得与下三人等,问各得几何.”意思是:“5人分取5钱,各人所得钱数依次成等差数列,其中前2人所得钱数之和与后3人所得钱数之和相等.”(“钱”是古代的一种重量单位),则其中第二人分得的钱数是( )
A.
B.1
C.
D.
科目:高中数学 来源: 题型:
【题目】如图,在正四棱柱ABCD﹣A1B1C1D1中,AB=1,AA1=2,点P是平面A1B1C1D1内的一个动点,则三棱锥P﹣ABC的正视图与俯视图的面积之比的最大值为( )
A.1
B.2
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系xOy中,曲线C1的参数方程为 (α为参数,﹣π<α<0),曲线C2的参数方程为 (t为参数),以O为极点,x轴的正半轴为极轴建立极坐标系.
(1)求曲线C1的极坐标方程和曲线C2的普通方程;
(2)射线θ=﹣ 与曲线C1的交点为P,与曲线C2的交点为Q,求线段PQ的长.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知奇函数y=f(x)定义域是R,当x≥0时,f(x)=x(1﹣x).
(1)求出函数y=f(x)的解析式;
(2)写出函数y=f(x)的单调递增区间.(不用证明,只需直接写出递增区间即可)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知集合A={x|y= },集合B={x|y=lg(﹣x2﹣7x﹣12)},集合C={x|m+1≤x≤2m﹣1}.
(1)求A∩B;
(2)若A∪C=A,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图所示,在正方体ABCD﹣A1B1C1D1中,M、N分别是棱AB、CC1的中点,△MB1P的顶点P在棱CC1与棱C1D1上运动,有以下四个命题:
①平面MB1P⊥ND1;②平面MB1P⊥平面ND1A1;③△MB1P在底面ABCD上的射影图形的面积为定值;④△MB1P在侧面D1C1CD上的射影图形是三角形.
其中正确命题的序号是 .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设直线 是函数f(x)=sinx+acosx的图象的一条对称轴.
(1)求函数f(x)的最大值及取得最大值时x的值;
(2)求函数f(x)在[0,π]上的减区间.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】小明设置的手机开机密码若连续3次输入错误,则手机被锁定,5分钟后,方可重新输入.某日,小明忘记了开机密码,但可以确定正确的密码是他常用的4个密码之一,于是,他决定逐个(不重复)进行尝试.
(1)求手机被锁定的概率;
(2)设第X次输入后能成功开机,求X的分布列和数学期望E(X).
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com