【题目】现有甲,乙两种不透明充气包装的袋装零食,每袋零食甲随机附赠玩具,,中的一个,每袋零食乙从玩具,中随机附赠一个.记事件:一次性购买袋零食甲后集齐玩具,,;事件:一次性购买袋零食乙后集齐玩具,.
(1)求概率,及;
(2)已知,其中,为常数,求.
【答案】(1),,;(2)
【解析】
(1)一次性购买4袋零食甲获得玩具的情况共有种不同的可能,其中能够集齐三种玩具的充要条件是,,三个玩具中,某个玩具出现两次,其余玩具各出现一次, 计算得到概率,同理可得答案.
(2)记,,计算,得到,利用累加法计算得到答案.
(1)一次性购买4袋零食甲获得玩具的情况共有种不同的可能,
其中能够集齐三种玩具的充要条件是,,三个玩具中,某个玩具出现两次,其余玩具各出现一次,对应的可能性为,故,
一次性购买5袋零食甲获得玩具的情况共有不同的可能,
其中能够集齐三种玩具的充要条件是,,三个玩具中,某个玩具出现三次,其余玩具各出现一次或某两个玩具各出现两次,另一个玩具出现一次,对应的可能性分别为,,
故.
一次性购买4袋零食乙获得玩具的情况共有种不同的可能,
其中不能集齐两种玩具的情况只有2种,即全是,全是,故.
(2)记,,根据题意及(1)的计算,不难整理得下表:
1 | 2 | 3 | 4 | 5 | |
0 | 0 | ||||
0 | … |
由于的对立事件总是2种情形(即全是,全是),
容易得到.
为解出待定系数,,令,即,
解得或(舍去,因为).
故,即,
同理,
……
,
累加可得().
当时,适合上式,∴.
科目:高中数学 来源: 题型:
【题目】假设关于某设备的使用年限x和所支出的维修费用 y(万元),有如下的统计资料:
x | 2 | 3 | 4 | 5 | 6 |
y | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料可知y对x呈线性相关关系,且线性回归方程为y=a+bx,其中已知b=1.23,请估计使用年限为20年时,维修费用约为_________
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】过点作圆的切线,已知,分别为切点,直线恰好经过椭圆的右焦点和下顶点,则直线方程为___________;椭圆的标准方程是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图1,已知等边的边长为3,点,分别是边,上的点,且,.如图2,将沿折起到的位置.
(1)求证:平面平面;
(2)给出三个条件:①;②二面角大小为;③.在这三个条件中任选一个,补充在下面问题的条件中,并作答:在线段上是否存在一点,使直线与平面所成角的正弦值为,若存在,求出的长;若不存在,请说明理由.注:如果多个条件分别解答,按第一个解答给分
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆:.
(1)曲线:与相交于,两点,为上异于,的点,若直线的斜率为1,求直线的斜率;
(2)若的左焦点为,右顶点为,直线:.过的直线与相交于,(在第一象限)两点,与相交于,是否存在使的面积等于的面积与的面积之和.若存在,求直线的方程;若不存在,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,CM,CN为某公园景观湖胖的两条木栈道,∠MCN=120°,现拟在两条木栈道的A,B处设置观景台,记BC=a,AC=b,AB=c(单位:百米)
(1)若a,b,c成等差数列,且公差为4,求b的值;
(2)已知AB=12,记∠ABC=θ,试用θ表示观景路线A-C-B的长,并求观景路线A-C-B长的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】年上半年,随着新冠肺炎疫情在全球蔓延,全球超过个国家或地区宣布进人紧急状态,部分国家或地区直接宣布“封国”或“封城”,随着国外部分活动进入停摆,全球经济缺乏活力,一些企业开始倒闭,下表为年第一季度企业成立年限与倒闭分布情况统计表:
企业成立年份 | 2019 | 2018 | 2017 | 2016 | 2015 |
企业成立年限 | 1 | 2 | 3 | 4 | 5 |
倒闭企业数量(万家) | 5.23 | 4.70 | 3.72 | 3.12 | 2.42 |
倒闭企业所占比例 | 21.8% | 19.6% | 15.5% | 13.0% | 10.1% |
根据上表,给出两种回归模型:
模型①:建立曲线型回归模型,求得回归方程为;
模型②:建立线性回归模型.
(1)根据所给的统计量,求模型②中关于的回归方程;
(2)根据下列表格中的数据,比较两种模型的相关指数,并选择拟合精度更高、更可靠的模型,预测年成立的企业中倒闭企业所占比例(结果保留整数).
回归模型 | 模型① | 模型② |
回归方程 | ||
参考公式:,;.
参考数据:,,,,,.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有一种水上闯关游戏,共设有3个关口,如果在规定的时间内闯过了这3个关口,那么闯关成功,否则闯关失败,结束游戏.假定小张、小王、小李闯过任何一个关口的概率分别为,且各关口能否顺利闯过相互独立.
(1)求小张、小王、小李分别闯关成功的概率;
(2)记小张、小王、小李三人中闯关成功的人数为X,求X的分布列及数学期望.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com