精英家教网 > 高中数学 > 题目详情

【题目】下列说法正确的是______(将所有正确的序号都写出)

1)直线及平面,若,则

2)不同平面,若存在,则,其中是直线,且

3)已知,则

4)平面,平面,则.

【答案】1)(2)(3)(4

【解析】

根据公理1判断(1)(3)正确;根据公理3判断(2)正确;根据面面平行的性质定理,判断(4)正确.

根据公理1,直线上有两个点在平面内,那么这条直线在平面内,也即直线上所有的点都在平面内,故(1)(3)正确.根据公理3,如果两个平面有一个公共点,那么有且仅有一条过该点的公共直线,两个平面的公共点都在公共直线上,故(2)正确.根据面面平行的性质定理可知(4)正确.综上所述,正确的说法为(1)(2)(3)(4.

故答案为:(1)(2)(3)(4

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点, 轴为极轴建立极坐标系,曲线的极坐标为

(1)求曲线的普通方程和曲线的直角坐标方程;

(2)若曲线和曲线有三个公共点,求以这三个公共点为顶点的三角形的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在数列 中,已知 为常数.

(1)证明: 成等差数列;

(2) ,求数列的前n项和

(3)时,数列 中是否存在不同的三项成等比数列,

也成等比数列?若存在,求出的值;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】朱世杰是历史上最伟大的数学家之一,他所著的《四元玉鉴》卷中“如像招数”五问中有如下问题:今有官司差夫一千八百六十四人筑堤,只云初日差六十四人,次日转多七人.”其大意为“官府陆续派遣1864人前往修筑堤坝,第一天派出64人,从第二天开始每天派出的人数比前一天多7人.”在该问题中的1864人全部派遣到位需要的天数为( )

A. 9B. 16C. 18D. 20

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】满足约束条件的最小值为7,则_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图所示,在直三棱柱中,,其中为棱上的中点,为棱上且位于点上方的动点.

(1)证明:平面

(2)若平面与平面所成的锐二面角的余弦值为,求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知两点,点是直角坐标平面上的动点,若将点的横坐标保持不变、纵坐标扩大到倍后得到点,且满足

1)求动点所在曲线的方程;

2)过点作斜率为的直线交曲线两点,且满足,又点关于原点的对称点为点,求点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学2018年的高考考生人数是2015年高考考生人数的倍,为了更好地对比该校考生的升学情况,统计了该校2015年和2018年的高考情况,得到如图柱状图:

则下列结论正确的是  

A. 与2015年相比,2018年一本达线人数减少

B. 与2015年相比,2018年二本达线人数增加了

C. 2015年与2018年艺体达线人数相同

D. 与2015年相比,2018年不上线的人数有所增加

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在多面体中,是等边三角形,是等腰直角三角形, ,平面平面平面.

(1) 求证:

(2) 若,求直线与平面所成角的正弦值.

查看答案和解析>>

同步练习册答案