(本小题满分12分).
如图,已知某椭圆的焦点是F1(-4,0)、F2(4,0),过点F2并垂直于x轴的直线与椭圆的一个交点为B,且|F1B|+|F2B|=10,椭圆上不同的两点A(x1,y1),C(x2,y2)满足条件:|F2A|、|F2B|、|F2C|成等差数列.
(1)求该弦椭圆的方程;
(2)求弦AC中点的横坐标;
(3)设弦AC的垂直平分线的方程为y=kx+m,求m的取值范围.
解:(1)由椭圆定义及条件知,2a=|F1B|+|F2B|=10,得a=5,又c=4,所以b==3.
故椭圆方程为=1.
(2)由点B(4,yB)在椭圆上,得|F2B|=|yB|=.因为椭圆右准线方程为x=,离心率为,根据椭圆定义,有|F2A|=(-x1),|F2C|=(-x2),
由|F2A|、|F2B|、|F2C|成等差数列,得
(-x1)+(-x2)=2×,由此得出:x1+x2=8.
设弦AC的中点为P(x0,y0),则x0==4.
(3)解法一:由A(x1,y1),C(x2,y2)在椭圆上.
|
①-②得9(x12-x22)+25(y12-y22)=0,
即9×=0(x1≠x2)
将 (k≠0)代入上式,得9×4+25y0(-)=0
(k≠0)
即k=y0(当k=0时也成立).
由点P(4,y0)在弦AC的垂直平分线上,得y0=4k+m,所以m=y0-4k=y0-y0=-y0.
由点P(4,y0)在线段BB′(B′与B关于x轴对称)的内部,得-<y0<,所以-<m<.
【解析】略
科目:高中数学 来源: 题型:
ON |
ON |
5 |
OM |
OT |
M1M |
N1N |
OP |
OA |
查看答案和解析>>
科目:高中数学 来源: 题型:
(2009湖南卷文)(本小题满分12分)
为拉动经济增长,某市决定新建一批重点工程,分别为基础设施工程、民生工程和产业建设工程三类,这三类工程所含项目的个数分别占总数的、、.现有3名工人独立地从中任选一个项目参与建设.求:
(I)他们选择的项目所属类别互不相同的概率; w.w.w.k.s.5.u.c.o.m
(II)至少有1人选择的项目属于民生工程的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
(本小题满分12分)
某民营企业生产A,B两种产品,根据市场调查和预测,A产品的利润与投资成正比,其关系如图1,B产品的利润与投资的算术平方根成正比,其关系如图2,
(注:利润与投资单位是万元)
(1)分别将A,B两种产品的利润表示为投资的函数,并写出它们的函数关系式.(2)该企业已筹集到10万元资金,并全部投入到A,B两种产品的生产,问:怎样分配这10万元投资,才能使企业获得最大利润,其最大利润为多少万元.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com