精英家教网 > 高中数学 > 题目详情

【题目】已知平面内一动点)到点的距离与点轴的距离的差等于1

1)求动点的轨迹的方程;

2)过点的直线与轨迹相交于不同于坐标原点的两点,求面积的最小值.

【答案】1;(2

【解析】

试题(1)根据平面内一动点到点的距离与点y轴的距离的差等于1,可得当时,点的距离等于点到直线的距离,所以动点的轨迹为抛物线;

2)过点的直线的方程为,代入,可得,利用韦达定理,结合面积,即可求面积的最小值.

试题解析:(1平面内一动点到点的距离与点轴的距离的差等于1

时,点的距离等于点到直线的距离,

动点的轨迹为抛物线,方程为);

动点的轨迹C的方程为);

2)设点坐标为点坐标为

过点的直线的方程为,代入,可得

面积

时,面积的最小值为2

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,设椭圆的左焦点为,左准线为为椭圆上任意一点,直线,垂足为,直线交于点

(1)若,且,直线的方程为.①求椭圆的方程;②是否存在点,使得?若存在,求出点的坐标;若不存在,说明理由.

(2)设直线与圆交于两点,求证:直线均与圆相切.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在正方形ABCD中,E为AB的中点,P为以A为圆心、AB为半径的圆弧上的任意一点,设向量=λ+μ,则λ+μ的最小值为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列{an}为等差数列,a7a210,且a1a6a21依次成等比数列.

1)求数列{an}的通项公式;

2)设bn,数列{bn}的前n项和为Sn,若Sn,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知点在抛物线上.

1)求的方程;

2)过上的任一点的顶点不重合)作轴于,试求线段中点的轨迹方程;

3)在上任取不同于点的点,直线与直线交于点,过点轴的垂线交抛物线于点,求面积的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,AB=2AD=2,∠DAB=60°PA=PC=2,且平面ACP⊥平面ABCD

(Ⅰ)求证:CBPD

(Ⅱ)求二面角C-PB-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

(1)求不等式的解集;

(2)若直线的图象所围成的多边形面积为,求实数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为,点上且其横坐标为1,以为圆心、为半径的圆与的准线相切.

(1)求的值;

(2)过点的直线交于两点,以为邻边作平行四边形,若点关于的对称点在上,求的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,四棱锥M-ABCD中,MB⊥平面ABCD,四边形ABCD是矩形,AB=MB,E、F分别为MA、MC的中点.

(1)求证:平面BEF⊥平面MAD;

(2)若,求三棱锥E-ABF的体积.

查看答案和解析>>

同步练习册答案