精英家教网 > 高中数学 > 题目详情
20.已知函数$f(x)=\sqrt{({{a^2}-1}){x^2}-({a-1})x+1}$的定义域是全体实数,那么实数a的取值范围是(-∞,-$\frac{5}{3}$]∪[1,+∞).

分析 通过讨论a的范围,结合二次函数的性质求出a的范围即可.

解答 解:若函数$f(x)=\sqrt{({{a^2}-1}){x^2}-({a-1})x+1}$的定义域是全体实数,
则a=1时,显然成立,a=-1时,f(x)=$\sqrt{2x+1}$,不成立,
若a2-1≠0,
则$\left\{\begin{array}{l}{{a}^{2}-1>0}\\{△{=(a-1)}^{2}-4{(a}^{2}-1)≤0}\end{array}\right.$,
解得:a≥1或a≤-$\frac{5}{3}$,
故答案为:(-∞,-$\frac{5}{3}$]∪[1,+∞).

点评 本题考查了二次函数的性质,考查分类讨论思想,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.设函数$f(x)=lnx+\frac{1}{x}$,则函数y=f(x)的单调递增区间是(1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.若函数f(x)=2sin($\frac{π}{3}$-2x)+1.
(1)求f(x)的单调递增区间;
(2)若方程f(x)+b=0在[$\frac{π}{2}$,π]上有解,求b的取值范围;
(3)将y=f(x)的图象向左平移$\frac{π}{6}$个单位后,再向下平移1个单位得到函数y=g(x)的图象.
①若y=g(ωx)的图象在(-2π,0)上单调递增,求ω的取值范围;
②若方程g(ωx)=2在(0,2π)上至少存在三个根,求ω的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.$y=3sin(\frac{x}{2}-\frac{π}{3})$的一条对称轴是(  )
A.$x=\frac{2π}{3}$B.$x=\frac{π}{2}$C.$x=-\frac{π}{3}$D.$x=\frac{8π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.函数y=|x|-$\sqrt{x+1}$的值域是[-1,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.若不等式|x-2|-|x+3|≤a对任意x∈R恒成立,则实数a的取值范围为a≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设集合A={x|a-2≤x≤2a+3,x∈R},B={x|x2-6x+5≤0}.
(1)若A∩B=B,求实数a的取值范围;
(2)若A∩∁UB=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知某三棱锥的三视图如图所示,则该三棱锥的体积为$\frac{2}{3}$,它的表面积为$2+2\sqrt{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设集合U={n|n∈N*且n≤9},A={2,5},B={1,2,4,5},则∁U(A∪B)中元素个数为(  )
A.4B.5C.6D.7

查看答案和解析>>

同步练习册答案