精英家教网 > 高中数学 > 题目详情
6.某三棱锥的三视图如图所示,则该三棱锥的4个面中,直角三角形的个数是1个,它的表面积是21.

分析 由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是底边是2,高是2的等腰三角形;底面垂直的侧面是个等腰三角形,底边长为2,高长为1;另两个侧面是等腰三角形,底边长为$\sqrt{2}$,腰长为$\sqrt{5}$,即可得出结论.

解答 解:由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是底边是2,高是2的等腰三角形,其面积为$\frac{1}{2}×2×2$=2
与底面垂直的侧面是个等腰三角形,底边长为2,高长为1,故是直角三角形,其面积为$\frac{1}{2}×2×1$=1,
另两个侧面是等腰三角形,底边长为$\sqrt{2}$,腰长为$\sqrt{5}$,其面积为$\frac{1}{2}×\sqrt{2}×\frac{9}{\sqrt{2}}$=9
∴表面积是2+1+18=21,
故答案为:1,21.

点评 本题考查三视图,几何体的表面积,考查空间想象能力,计算能力,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.数列{an}的各项均为正数,Sn为其前n项和,对于任意n∈N*,总有an,Sn,an2成等差数列.
(1)求数列{an}的通项公式;
(2)设数列{bn}中,bn=a1•a2•a3•…•an,数列{$\frac{1}{{b}_{n}}$}的前n项和为Tn,求证:Tn<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若a和b均为非零实数,则下列不等式中恒成立的是 (  )
A.$\frac{{{a^2}+{b^2}}}{2}≥{(\frac{a+b}{2})^2}$B.$\frac{b}{a}+\frac{a}{b}≥2$C.$(a+b)(\frac{1}{a}+\frac{1}{b})≥4$D.$\frac{|a+b|}{2}≥\sqrt{\;|ab|}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.三棱柱ABC-A1B1C1的底是边长为1的正三角形,高AA1=1,在AB上取一点P,设△PA1C1与面A1B1C1所成的二面角为α,△PB1C1与面A1B1C1所成的二面角为β,则tan(α+β)的最小值是-$\frac{8\sqrt{3}}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A={x∈R|x2-2x-8=0},B={x∈R|x2+ax+a2-12=0},B是A的非空子集,求实数a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在四棱锥P-ABCD中,底面ABCD是平行四边形,侧面PAD⊥底面ABCD,E,F分别为PA,BD的中点,PA=PD=AD=2,$AB=2\sqrt{2}$,∠DAB=45°.
(Ⅰ)求证:EF∥平面PBC;
(Ⅱ)求证:平面DEF⊥平面PAD.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知曲线f(x)=$\frac{1}{3}$ax3-4lnx在点(1,f(1))处的切线l与x轴的交点为($\frac{4}{3}$,0).
(1)求f(x)的极小值;
(2)求证:对任意x∈(0,+∞),$\frac{{x}^{4}}{6}+\frac{2}{e}$>$\frac{xf(x)}{4}+\frac{x}{{e}^{x}}$(e为自然对数的底数).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.四面体A-BCD各面都是边长为$\sqrt{5}$,$\sqrt{10}$,$\sqrt{13}$的全等三角形,则该四面体的体积为2,顶点A到底面BCD的距离为$\frac{12}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.(1)方程$\sqrt{{x}^{2}+{y}^{2}}$$+\sqrt{(x-3)^{2}+({y-4)}^{2}}$=5表示的曲线是线段
(2)方程$\sqrt{{x}^{2}+{y}^{2}}$$+\sqrt{(x-3)^{2}+({y-4)}^{2}}$=6表示的曲线又是椭圆.

查看答案和解析>>

同步练习册答案