分析 由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是底边是2,高是2的等腰三角形;底面垂直的侧面是个等腰三角形,底边长为2,高长为1;另两个侧面是等腰三角形,底边长为$\sqrt{2}$,腰长为$\sqrt{5}$,即可得出结论.
解答 解:由三视图知几何体是一个侧面与底面垂直的三棱锥,底面是底边是2,高是2的等腰三角形,其面积为$\frac{1}{2}×2×2$=2
与底面垂直的侧面是个等腰三角形,底边长为2,高长为1,故是直角三角形,其面积为$\frac{1}{2}×2×1$=1,
另两个侧面是等腰三角形,底边长为$\sqrt{2}$,腰长为$\sqrt{5}$,其面积为$\frac{1}{2}×\sqrt{2}×\frac{9}{\sqrt{2}}$=9
∴表面积是2+1+18=21,
故答案为:1,21.
点评 本题考查三视图,几何体的表面积,考查空间想象能力,计算能力,是中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
A. | $\frac{{{a^2}+{b^2}}}{2}≥{(\frac{a+b}{2})^2}$ | B. | $\frac{b}{a}+\frac{a}{b}≥2$ | C. | $(a+b)(\frac{1}{a}+\frac{1}{b})≥4$ | D. | $\frac{|a+b|}{2}≥\sqrt{\;|ab|}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com